IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2235-d353625.html
   My bibliography  Save this article

Enhancing CO 2 Hydrogenation to Methane by Ni-Based Catalyst with V Species Using 3D-mesoporous KIT-6 as Support

Author

Listed:
  • Hongxia Cao

    (Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
    Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, China University of Mining and Technology, Xuzhou 221116, China
    School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
    Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China)

  • Wenyuan Wang

    (School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

  • Tianlei Cui

    (School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

  • Hongyan Wang

    (Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
    School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China)

  • Guang Zhu

    (Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China)

  • Xiangkun Ren

    (Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China)

Abstract

Using renewable H 2 for CO 2 hydrogenation to methane not only achieves CO 2 utilization, but also mitigates the greenhouse effect. In this work, several Ni-based catalysts with V species using 3D-mesoporous KIT-6 (Korea Advanced Institute of Science and Technology, KIT) as support were prepared at different contents of NiO and V 2 O 5 . Small Ni nanoparticles with high dispersibility on 20Ni-0.5V/KIT-6 were identified by X-ray diffraction (XRD), TEM and hydrogen temperature-programmed desorption (H 2 -TPD) analysis, which promoted the production of more Ni active sites for enhancing catalytic activity for CO 2 methanation. Moreover, TEM and hydrogen temperature-programmed reduction (H 2 -TPR) characterizations confirmed that a proper amount of Ni and V species was favorable to preserve the 3D-mesoporous structure and strengthen the interaction between active Ni and KIT-6. The synergistic effect between Ni and V could strengthen surface basicity to elevate the ability of CO 2 activity on the 20Ni-0.5V/KIT-6. In addition, a strong interaction with the 3D-mesoporous structure allowed active Ni to be firmly anchored onto the catalyst surface, which was accountable for improving catalytic activity and stability. These results revealed that 20Ni-0.5V/KIT-6 was a catalyst with superior catalytic activity and stability, which was considered as a promising candidate for CO 2 hydrogenation to methane.

Suggested Citation

  • Hongxia Cao & Wenyuan Wang & Tianlei Cui & Hongyan Wang & Guang Zhu & Xiangkun Ren, 2020. "Enhancing CO 2 Hydrogenation to Methane by Ni-Based Catalyst with V Species Using 3D-mesoporous KIT-6 as Support," Energies, MDPI, vol. 13(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2235-:d:353625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Li, Lin & Tang, Dawei & Song, Yongchen & Jiang, Bo & Zhang, Qian, 2018. "Hydrogen production from ethanol steam reforming on Ni-Ce/MMT catalysts," Energy, Elsevier, vol. 149(C), pages 937-943.
    3. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bailera, Manuel & Lisbona, Pilar & Peña, Begoña & Alarcón, Andreina & Guilera, Jordi & Perpiñán, Jorge & Romeo, Luis M., 2022. "Synthetic natural gas production in a 1 kW reactor using Ni–Ce/Al2O3 and Ru–Ce/Al2O3: Kinetics, catalyst degradation and process design," Energy, Elsevier, vol. 256(C).
    2. Zhang, Qiaofei & Xie, Wenlei & Li, Jiangbo & Guo, Lihong, 2023. "Bimetallic Zrx-Aly-KIT-6 modified with sulfate as acidic catalyst for biodiesel production from low-grade acidic oils," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    2. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    6. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    7. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    8. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    9. Lou, Feijian & Zhang, Anfeng & Zhang, Guanghui & Ren, Limin & Guo, Xinwen & Song, Chunshan, 2020. "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure," Applied Energy, Elsevier, vol. 264(C).
    10. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    11. Guilera, Jordi & Andreu, Teresa & Basset, Núria & Boeltken, Tim & Timm, Friedemann & Mallol, Ignasi & Morante, Joan Ramon, 2020. "Synthetic natural gas production from biogas in a waste water treatment plant," Renewable Energy, Elsevier, vol. 146(C), pages 1301-1308.
    12. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    13. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    14. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    15. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    16. Md. Alhaz Uddin & Sk. Yasir Arafat Siddiki & Shams Forruque Ahmed & Zahidul Islam Rony & M. A. K. Chowdhury & M. Mofijur, 2021. "Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste," Energies, MDPI, vol. 14(22), pages 1-11, November.
    17. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    18. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    19. Chao Zhang & Chenyu Qiao & Songyan Li & Zhaomin Li, 2018. "The Effect of Oil Properties on the Supercritical CO 2 Diffusion Coefficient under Tight Reservoir Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    20. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2235-:d:353625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.