IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2201-d353294.html
   My bibliography  Save this article

Data Driven Optimization of Energy Management in Residential Buildings with Energy Harvesting and Storage

Author

Listed:
  • Nadia Ahmed

    (Donald Bren School of Information and Computer Science, University of California, Irvine, CA 92697, USA)

  • Marco Levorato

    (Donald Bren School of Information and Computer Science, University of California, Irvine, CA 92697, USA)

  • Roberto Valentini

    (Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Guann-Pyng Li

    (Donald Bren School of Information and Computer Science, University of California, Irvine, CA 92697, USA)

Abstract

This paper presents a battery-aware stochastic control framework for residential energy management systems (EMS) equipped with energy harvesting, that is, photovoltaic panels, and storage capabilities. The model and control rationale takes into account the dynamics of load, the weather, the weather forecast, the utility, and consumer preferences into a unified Markov decision process. The embedded optimization problem is formulated to determine the proportion of energy drawn from the battery and the grid to minimize a cost function capturing a user-defined tradeoff between battery degradation and financial expense by user preferences. Numerical results are based on real-world weather data for Golden, Colorado, and load traces. The results illustrate the ability of the system to limit battery degradation assessed using the Rain flow counting method for lithium ion batteries.

Suggested Citation

  • Nadia Ahmed & Marco Levorato & Roberto Valentini & Guann-Pyng Li, 2020. "Data Driven Optimization of Energy Management in Residential Buildings with Energy Harvesting and Storage," Energies, MDPI, vol. 13(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2201-:d:353294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    2. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoon Lee & Jin-Wook Kang & Bong-Yeon Choi & Kyung-Min Kang & Mi-Na Kim & Chang-Gyun An & Junsin Yi & Chung-Yuen Won, 2021. "Energy Management System of DC Microgrid in Grid-Connected and Stand-Alone Modes: Control, Operation and Experimental Validation," Energies, MDPI, vol. 14(3), pages 1-26, January.
    2. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    2. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    3. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    4. Stéphanie Camaréna, 2021. "Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    6. Gianluca MISURACA & Colin van Noordt, 2020. "AI Watch - Artificial Intelligence in public services: Overview of the use and impact of AI in public services in the EU," JRC Research Reports JRC120399, Joint Research Centre.
    7. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    8. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    9. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    10. Jaros³aw Brodny & Magdalena Tutak, 2023. "The level of implementing sustainable development goal "Industry, innovation and infrastructure" of Agenda 2030 in the European Union countries: Application of MCDM methods," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 47-102, March.
    11. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    12. Giacomo Valente & Vittoriano Muttillo & Mirco Muttillo & Gianluca Barile & Alfiero Leoni & Walter Tiberti & Luigi Pomante, 2019. "SPOF—Slave Powerlink on FPGA for Smart Sensors and Actuators Interfacing for Industry 4.0 Applications," Energies, MDPI, vol. 12(9), pages 1-13, April.
    13. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    14. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    16. Sergio Genovesi & Julia Maria Mönig, 2022. "Acknowledging Sustainability in the Framework of Ethical Certification for AI," Sustainability, MDPI, vol. 14(7), pages 1-10, March.
    17. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    18. Wang, Weilong & Xiao, Deheng & Wang, Jianlong & Wu, Haitao, 2024. "The cost of pollution in the digital era: Impediments of air pollution on enterprise digital transformation," Energy Economics, Elsevier, vol. 134(C).
    19. Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    20. Filipe, Jorge & Bessa, Ricardo J. & Reis, Marisa & Alves, Rita & Póvoa, Pedro, 2019. "Data-driven predictive energy optimization in a wastewater pumping station," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2201-:d:353294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.