IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2145-d352681.html
   My bibliography  Save this article

Heat Transport Capacity of an Axial-Rotating Single-Loop Oscillating Heat Pipe for Abrasive-Milling Tools

Author

Listed:
  • Ning Qian

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yucan Fu

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Marco Marengo

    (Advanced Engineering Centre, University of Brighton, Brighton BN2 4GJ, UK)

  • Jiuhua Xu

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jiajia Chen

    (College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China)

  • Fan Jiang

    (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

In order to enhance heat transfer in the abrasive-milling processes to reduce thermal damage, the concept of employing oscillating heat pipes (OHPs) in an abrasive-milling tool is proposed. A single-loop OHP (SLOHP) is positioned on the plane parallel to the rotational axis of the tool. In this case, centrifugal accelerations do not segregate the fluid between the evaporator and condenser. The experimental investigation is conducted to study the effects of centrifugal acceleration (0–738 m/s 2 ), heat flux (9100–31,850 W/m 2 ) and working fluids (methanol, acetone and water) on the thermal performance. Results show that the centrifugal acceleration has a positive influence on the thermal performance of the axial-rotating SLOHP when filled with acetone or methanol. As for water, with the increase of centrifugal acceleration, the heat transfer performance first increases and then decreases. The thermal performance enhances for higher heat flux rises for all the fluids. The flow inside the axial-rotating SLOHP is analyzed by a slow-motion visualization supported by the theoretical analysis. Based on the theoretical analysis, the rotation will increase the resistance for the vapor to penetrate through the liquid slugs to form an annular flow, which is verified by the visualization.

Suggested Citation

  • Ning Qian & Yucan Fu & Marco Marengo & Jiuhua Xu & Jiajia Chen & Fan Jiang, 2020. "Heat Transport Capacity of an Axial-Rotating Single-Loop Oscillating Heat Pipe for Abrasive-Milling Tools," Energies, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2145-:d:352681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Jose Loyola-Fuentes & Luca Pietrasanta & Marco Marengo & Francesco Coletti, 2022. "Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes," Energies, MDPI, vol. 15(6), pages 1-20, March.
    3. Khanjari, Ali & Mahmoodi, Esmail & Ahmadi, Mohammad Hossien, 2020. "Energy and exergy analyzing of a wind turbine in free stream and wind tunnel in CFD domain based on actuator disc technique," Renewable Energy, Elsevier, vol. 160(C), pages 231-249.
    4. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2145-:d:352681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.