IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2071-d348385.html
   My bibliography  Save this article

Hot Water Extraction: Short Rotation Willow, Mixed Hardwoods, and Process Considerations

Author

Listed:
  • Christopher D. Wood

    (Applied Biorefinery Sciences, Syracuse, New York, NY 13212, USA)

  • Thomas E. Amidon

    (Applied Biorefinery Sciences, Syracuse, New York, NY 13212, USA)

  • Timothy A. Volk

    (Department of Sustainable Resources Management, SUNY College of Environmental Science and Forestry, Syracuse, New York, NY 13210, USA)

  • Rachel M. Emerson

    (Chemical and Radiation Measurement Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA)

Abstract

Short rotation woody crops (SRWC) like shrub willow are highly productive biomass resources of interest for energy and fuel applications. Hot water extraction (HWE) as an upgrading tool to enable the use of willow biomass in pellet applications has been proposed, and is of increasing interest. This study treats willow and mixes of willow and conventional mixed hardwood feedstock with HWE in a tumbling laboratory reactor to elucidate the effects of time, temperature, feedstock mixes, and other process considerations (water:biomass ratio, presteaming, counter-current processing) on mass removals and other extraction outcomes (e.g., sugar, acetate, and furan yields). Results demonstrated alignment of extraction outcomes with P-factor from 155 °C to 175 °C, with a good compromise of removed mass and co-product potential in the range from 575–800 P-factor. The preferred condition was chosen as 575 P-factor. HWE of mixes of willow and hardwood feedstocks showed a linear response of extraction outcomes to willow:hardwood ratios. Testing of water:biomass ratios demonstrated that this is a significant consideration, with each outcome being affected somewhat differently, and indicating that HWE is more diffusion dependent than expected. Presteaming shows little to no effect on extraction outcomes, while multi-stage cooks simulating counter-current operation indicate a significant potential value in counter-current extraction.

Suggested Citation

  • Christopher D. Wood & Thomas E. Amidon & Timothy A. Volk & Rachel M. Emerson, 2020. "Hot Water Extraction: Short Rotation Willow, Mixed Hardwoods, and Process Considerations," Energies, MDPI, vol. 13(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2071-:d:348385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Ting Wang & Chengyan Jing & Christopher Wood & Aditi Nagardeolekar & Neil Kohan & Prajakta Dongre & Thomas E. Amidon & Biljana M. Bujanovic, 2017. "Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery," Energies, MDPI, vol. 11(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2071-:d:348385. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.