IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1986-d346803.html
   My bibliography  Save this article

Analysis of Energy Consumption of the Reduction of Fe 2 O 3 by Hydrogen and Carbon Monoxide Mixtures

Author

Listed:
  • Guanyong Sun

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China)

  • Bin Li

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China)

  • Wensheng Yang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China)

  • Jing Guo

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China)

  • Hanjie Guo

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

Energy consumption is directly related to the energy supply and production costs of gas-based direct reduction ironmaking, which is an effective choice to reduce the energy consumption of iron making. In this paper, the minimum Gibbs free energy principle was used to calculate the equilibrium composition under the conditions of reduction gas consisting of hydrogen and carbon monoxide (hydrogen concentration of 0–100%, reduction gas amount of 0–6.0 mol, reduction temperature of 790–1100 °C, and 0.5 mol Fe 2 O 3 ). According to the enthalpy change, a simplified energy consumption model of a gas-based direct reduction ironmaking process was established, and the energy consumption per mole of metallic iron produced was calculated in detail. The following conclusions were drawn: at the stage when the reduction reaction occurred, the utilization rate of hydrogen or carbon monoxide remained unchanged with the increase in the amount of reduction gas or the increase in the hydrogen concentration of initial gas. The direct energy consumption increased with the increase in the hydrogen concentration at 790–980 °C and the opposite was true at 980–1100 °C. At 790–980 °C, the total energy consumption per ton of iron was greater than 0 and increased with the increase in initial hydrogen concentration from 40% to 100%, and it was less than 0 and increased with the increase in initial hydrogen concentration from 0% to 30%. It was possible to achieve zero total energy consumption with a hydrogen concentration of 30% and a 973 °C reduction.

Suggested Citation

  • Guanyong Sun & Bin Li & Wensheng Yang & Jing Guo & Hanjie Guo, 2020. "Analysis of Energy Consumption of the Reduction of Fe 2 O 3 by Hydrogen and Carbon Monoxide Mixtures," Energies, MDPI, vol. 13(8), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1986-:d:346803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1986/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1986/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    2. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Ziyang & Du, Tao & Yue, Qiang & Na, Hongming & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Li, Yingnan, 2023. "A multi-parameters evaluation on exergy for hydrogen metallurgy," Energy, Elsevier, vol. 281(C).
    2. Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
    3. Guanyong Sun & Bin Li & Hanjie Guo & Wensheng Yang & Shaoying Li & Jing Guo, 2020. "Thermodynamic Study on Reduction of Iron Oxides by H 2 + CO + CH 4 + N 2 Mixture at 900 °C," Energies, MDPI, vol. 13(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Hsin & Hsu, Chih-Liang & Wang, Xiao-Dong, 2016. "Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization," Energy, Elsevier, vol. 109(C), pages 326-340.
    2. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Spyridon Voutetakis & Ismael Matino & Alice Petrucciani & Antonella Zaccara & Valentina Colla & Stefano Dettori & Teresa Annunziata Branca & Vi, 2021. "Integration of Renewable Hydrogen Production in Steelworks Off-Gases for the Synthesis of Methanol and Methane," Energies, MDPI, vol. 14(10), pages 1-24, May.
    3. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    4. Do, Thai Ngan & Hur, Young Gul & Chung, Hegwon & Kim, Jiyong, 2023. "Potentials and benefit assessment of green fuels from residue gas via gas-to-liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    6. Michael Bampaou & Kyriakos Panopoulos & Panos Seferlis & Amaia Sasiain & Stephane Haag & Philipp Wolf-Zoellner & Markus Lehner & Leokadia Rog & Przemyslaw Rompalski & Sebastian Kolb & Nina Kieberger &, 2022. "Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane," Energies, MDPI, vol. 15(13), pages 1-26, June.
    7. Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
    8. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    9. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    10. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    11. Stefan Nabernegg & Birgit Bednar-Friedl & Fabian Wagner & Thomas Schinko & Janusz Cofala & Yadira Mori Clement, 2017. "The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India," Energies, MDPI, vol. 10(3), pages 1-26, March.
    12. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    13. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. de Oliveira Junior, Valter B. & Pena, João G. Coelho & Salles, José L. Félix, 2016. "An improved plant-wide multiperiod optimization model of a byproduct gas supply system in the iron and steel-making process," Applied Energy, Elsevier, vol. 164(C), pages 462-474.
    16. Fesefeldt, M. & Capezzali, M. & Bozorg, M. & de Lapparent, M., 2021. "Evaluation of future scenarios for gas distribution networks under hypothesis of decreasing heat demand in urban zones," Energy, Elsevier, vol. 231(C).
    17. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    18. Ratidzo Yvonne Nyakudya Ncube & Michael Ayomoh, 2025. "Optimisation Strategies and Technological Advancements for Sustainable Direct Reduction Iron Production—A Systematic Review," Sustainability, MDPI, vol. 17(5), pages 1-23, March.
    19. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & He, Jianfei & Yuan, Yuxing & Yan, Tianyi & Du, Tao, 2021. "A novel evaluation method for energy efficiency of process industry — A case study of typical iron and steel manufacturing process," Energy, Elsevier, vol. 233(C).
    20. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1986-:d:346803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.