IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1949-d345946.html
   My bibliography  Save this article

Validation of SAM Modeling of Concentrated Solar Power Plants

Author

Listed:
  • Alberto Boretti

    (Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia)

  • Jamal Nayfeh

    (Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia)

  • Wael Al-Kouz

    (Mechanical Engineering Department, College of Engineering, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia)

Abstract

The paper proposes the validation of the latest System Advisor Model (SAM) vs. the experimental data for concentrated solar power energy facilities. Both parabolic trough, and solar tower, are considered, with and without thermal energy storage. The 250 MW parabolic trough facilities of Genesis, Mojave, and Solana, and the 110 MW solar tower facility of Crescent Dunes, all in the United States South-West, are modeled. The computed monthly average capacity factors for the average weather year are compared with the experimental data measured since the start of the operation of the facilities. While much higher sampling frequencies are needed for proper validation, as monthly averaging dramatically filters out differences between experiments and simulations, computational results are relatively close to measured values for the parabolic trough, and very far from for solar tower systems. The thermal energy storage is also introducing additional inaccuracies. It is concluded that the code needs further development, especially for the solar field and receiver of the solar tower modules, and the thermal energy storage. Validation of models and sub-models vs. high-frequency data collected on existing facilities, for both energy production, power plant parameters, and weather conditions, is a necessary step before using the code for designing novel facilities.

Suggested Citation

  • Alberto Boretti & Jamal Nayfeh & Wael Al-Kouz, 2020. "Validation of SAM Modeling of Concentrated Solar Power Plants," Energies, MDPI, vol. 13(8), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1949-:d:345946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adnan Al-Bashir & Mohamed Al-Dweri & Ahmad Al-Ghandoor & Bashar Hammad & Wael Al-Kouz, 2020. "Analysis of Effects of Solar Irradiance, Cell Temperature and Wind Speed on Photovoltaic Systems Performance," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 353-359.
    2. Francis M. Lopes & Ricardo Conceição & Hugo G. Silva & Thomas Fasquelle & Rui Salgado & Paulo Canhoto & Manuel Collares-Pereira, 2019. "Short-Term Forecasts of DNI from an Integrated Forecasting System (ECMWF) for Optimized Operational Strategies of a Central Receiver System," Energies, MDPI, vol. 12(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahlioui, Dounia & El Hamdani, Fayrouz & Djdiaa, Abdelali & Martínez López, Teodoro & Bouzekri, Hicham, 2023. "Assessment of dry and wet cleaning of aluminum mirrors toward water consumption reduction," Renewable Energy, Elsevier, vol. 205(C), pages 248-255.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Francis M. & Conceição, Ricardo & Silva, Hugo G. & Salgado, Rui & Collares-Pereira, Manuel, 2021. "Improved ECMWF forecasts of direct normal irradiance: A tool for better operational strategies in concentrating solar power plants," Renewable Energy, Elsevier, vol. 163(C), pages 755-771.
    2. Lopes, Telma & Fasquelle, Thomas & Silva, Hugo G., 2021. "Pressure drops, heat transfer coefficient, costs and power block design for direct storage parabolic trough power plants running molten salts," Renewable Energy, Elsevier, vol. 163(C), pages 530-543.
    3. Saeed Iqbal & Shahid Nawaz Khan & Muhammad Sajid & Jawad Khan & Yasar Ayaz & Adeel Waqas, 2023. "Impact and performance efficiency analysis of grid-tied solar photovoltaic system based on installation site environmental factors," Energy & Environment, , vol. 34(7), pages 2343-2363, November.
    4. David Borge-Diez & Enrique Rosales-Asensio & Ana I. Palmero-Marrero & Emin Acikkalp, 2022. "Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets," Energies, MDPI, vol. 15(5), pages 1-25, February.
    5. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    6. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    7. Muhannad Haj Hussein & Sameh Monna & Ramez Abdallah & Adel Juaidi & Aiman Albatayneh, 2022. "Improving the Thermal Performance of Building Envelopes: An Approach to Enhancing the Building Energy Efficiency Code," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    8. Ren, Xiaojun & Wu, Yongtang & Hao, Dongmin & Liu, Guoxu & Zafetti, Nicholas, 2021. "Analysis of the performance of the multi-objective hybrid hydropower-photovoltaic-wind system to reduce variance and maximum power generation by developed owl search algorithm," Energy, Elsevier, vol. 231(C).
    9. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    10. Sameer Al-Dahidi & Salah Al-Nazer & Osama Ayadi & Shuruq Shawish & Nahed Omran, 2020. "Analysis of the Effects of Cell Temperature on the Predictability of the Solar Photovoltaic Power Production," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 208-219.
    11. Andrea Salimbeni & Mario Porru & Luca Massidda & Alfonso Damiano, 2020. "A Forecasting-Based Control Algorithm for Improving Energy Managment in High Concentrator Photovoltaic Power Plant Integrated with Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-20, September.
    12. Segarra-Tamarit, Jorge & Pérez, Emilio & Moya, Eric & Ayuso, Pablo & Beltran, Hector, 2021. "Deep learning-based forecasting of aggregated CSP production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 306-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1949-:d:345946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.