IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1920-d345290.html
   My bibliography  Save this article

Low-Capacity Exploitation of Distribution Networks and Its Effect on the Planning of Distribution Networks

Author

Listed:
  • Jorge A. Alarcon

    (Department of Electric Engineering, Universidad Distrital Francisco José de Caldas, Bogotá 111321, Colombia
    Department of Electric and Electronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

  • Francisco Santamaria

    (Department of Electric Engineering, Universidad Distrital Francisco José de Caldas, Bogotá 111321, Colombia)

  • Ameena S. Al-Sumaiti

    (Advanced Power and Energy Center, Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi 127788, UAE)

  • Sergio Rivera

    (Department of Electric and Electronic Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

Abstract

The continuous variation and dispersion of the load demand during a 24-h day are uncontrolled aspects that affect the efficiency, operational conditions, and total cost of the power distribution network. The cost of the network is strongly related to the peak of demand, but the available capacity of the network is not used efficiently during the day because feeders and branches usually work under 70% of their full capacity. In this way, it is necessary to measure how efficiently the distribution network capacity is used and to identify the aspects that can be modified to improve it. This article proposes a new exploitation capacity index to measure the efficiency of a/the whole distribution network throughout the day in relation to the total available capacity of the branches that compose the network. The paper presents the mathematical formulation and the validation process of the index, and then it provides a planning case study in which the index and the total cost of the planning problem are calculated and compared in four different scenarios in which the peak of the load demand changes. The results show a direct relation between the exploitation capacity and the peak of demand, so lower exploitation capacities are strongly related to higher peaks of demand. As for the capital investments for the network planning, it is found that higher peaks of demand involve more upgrade necessities and higher capital investments compared to the other cases.

Suggested Citation

  • Jorge A. Alarcon & Francisco Santamaria & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Low-Capacity Exploitation of Distribution Networks and Its Effect on the Planning of Distribution Networks," Energies, MDPI, vol. 13(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1920-:d:345290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soroudi, Alireza & Ehsan, Mehdi, 2010. "A distribution network expansion planning model considering distributed generation options and techo-economical issues," Energy, Elsevier, vol. 35(8), pages 3364-3374.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    2. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    3. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    4. Dashti, Reza & Yousefi, Shaghayegh & Parsa Moghaddam, Mohsen, 2013. "Comprehensive efficiency evaluation model for electrical distribution system considering social and urban factors," Energy, Elsevier, vol. 60(C), pages 53-61.
    5. Singh, Bindeshwar & Pal, Charitra & Mukherjee, V. & Tiwari, Prabhakar & Yadav, Manish Kumar, 2017. "Distributed generation planning from power system performances viewpoints: A taxonomical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1472-1492.
    6. Ran Li & Huizhuo Ma & Feifei Wang & Yihe Wang & Yang Liu & Zenghui Li, 2013. "Game Optimization Theory and Application in Distribution System Expansion Planning, Including Distributed Generation," Energies, MDPI, vol. 6(2), pages 1-24, February.
    7. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2015. "Assessing low voltage network constraints in distributed energy resources planning," Energy, Elsevier, vol. 84(C), pages 783-793.
    8. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    9. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    10. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    11. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2018. "Impact of optimised distributed energy resources on local grid constraints," Energy, Elsevier, vol. 142(C), pages 878-895.
    12. Ji, Ling & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao & Song, Yi-Hang, 2017. "Explicit cost-risk tradeoff for renewable portfolio standard constrained regional power system expansion: A case study of Guangdong Province, China," Energy, Elsevier, vol. 131(C), pages 125-136.
    13. Gitizadeh, Mohsen & Vahed, Ali Azizi & Aghaei, Jamshid, 2013. "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied Energy, Elsevier, vol. 101(C), pages 655-666.
    14. Aghaei, Jamshid & Muttaqi, Kashem M. & Azizivahed, Ali & Gitizadeh, Mohsen, 2014. "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, Elsevier, vol. 65(C), pages 398-411.
    15. Zangiabadi, Mansoureh & Feuillet, Rene & Lesani, Hamid & Hadj-Said, Nouredine & Kvaløy, Jan T., 2011. "Assessing the performance and benefits of customer distributed generation developers under uncertainties," Energy, Elsevier, vol. 36(3), pages 1703-1712.
    16. Abbasi, Ali Reza & Seifi, Ali Reza, 2015. "Considering cost and reliability in electrical and thermal distribution networks reinforcement planning," Energy, Elsevier, vol. 84(C), pages 25-35.
    17. Karatepe, Engin & Ugranlı, Faruk & Hiyama, Takashi, 2015. "Comparison of single- and multiple-distributed generation concepts in terms of power loss, voltage profile, and line flows under uncertain scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 317-327.
    18. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    19. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    20. Huang, Yalin & Söder, Lennart, 2017. "Evaluation of economic regulation in distribution systems with distributed generation," Energy, Elsevier, vol. 126(C), pages 192-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1920-:d:345290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.