IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1539-d336774.html
   My bibliography  Save this article

Properties of Fractional-Order Magnetic Coupling

Author

Listed:
  • Sebastian Różowicz

    (Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Andrzej Zawadzki

    (Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Maciej Włodarczyk

    (Department of Industrial Electrical Engineering and Automatic Control, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Henryk Wachta

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland)

  • Krzysztof Baran

    (Department of Power Electronics and Power Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland)

Abstract

This paper presents the properties of fractional-order magnetic coupling. The difficulties connected with the analysis of two coils in dynamic states, resulting from the classical approach, provided motivation for studying the properties of fractional-order magnetic coupling. These difficulties arise from failure to comply with the commutation laws, i.e., a sudden power disappearance in the primary winding caused by a switch-mode power supply. Theoretically, under ideal conditions, a sudden power disappearance in the coil is, according to the classical method, manifested by a sudden voltage surge in the form of the Dirac delta function. As is well-known, it is difficult to obtain such ideal conditions in practice; the time of current disappearance does not equal zero due to the circuit breaker’s imperfection (even when electronic circuit breakers are used, the time equals several hundred nanoseconds). Furthermore, it is necessary to take into account phenomena occurring in real inductances, such as the skin effect, the influence of the ferromagnetic core and many other factors. It would be very difficult to model all these phenomena using classical differential calculus. The application of fractional-order differential calculus makes it possible to model them in a simple way by appropriate selection of coefficients and fractional-order derivatives. It should be mentioned that the analysis could be used, for example, in the case of high-voltage generation systems, including spark ignition systems of internal combustion engines. The use of fractional-order differential calculus will allow for more accurate modeling of phenomena occurring in such systems.

Suggested Citation

  • Sebastian Różowicz & Andrzej Zawadzki & Maciej Włodarczyk & Henryk Wachta & Krzysztof Baran, 2020. "Properties of Fractional-Order Magnetic Coupling," Energies, MDPI, vol. 13(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1539-:d:336774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Leśko & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Adaptive Luminaire with Variable Luminous Intensity Distribution," Energies, MDPI, vol. 13(3), pages 1-22, February.
    2. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz & Damian Mazur, 2019. "Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources," Energies, MDPI, vol. 12(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Staszak, 2022. "Solid-Rotor Induction Motor Modeling Based on Circuit Model Utilizing Fractional-Order Derivatives," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Sebastian Różowicz & Zbigniew Goryca & Antoni Różowicz, 2022. "Permanent Magnet Generator for a Gearless Backyard Wind Turbine," Energies, MDPI, vol. 15(10), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Baran & Antoni Różowicz & Henryk Wachta & Sebastian Różowicz, 2020. "Modeling of Selected Lighting Parameters of LED Panel," Energies, MDPI, vol. 13(14), pages 1-22, July.
    2. Piotr Tomczuk & Marcin Chrzanowicz & Piotr Jaskowski & Marcin Budzynski, 2021. "Evaluation of Street Lighting Efficiency Using a Mobile Measurement System," Energies, MDPI, vol. 14(13), pages 1-25, June.
    3. Rafał Krupiński & Henryk Wachta & Wojciech Maciej Stabryła & Cedric Büchner, 2021. "Selected Issues on Material Properties of Objects in Computer Simulations of Floodlighting," Energies, MDPI, vol. 14(17), pages 1-24, September.
    4. Antoni Różowicz & Henryk Wachta & Krzysztof Baran & Marcin Leśko & Sebastian Różowicz, 2022. "Arrangement of LEDs and Their Impact on Thermal Operating Conditions in High-Power Luminaires," Energies, MDPI, vol. 15(21), pages 1-17, November.
    5. Sungjoon Byun & Seounghwan Hyeon & Kwan-Soo Lee, 2022. "Guide Vane for Thermal Enhancement of a LED Heat Sink," Energies, MDPI, vol. 15(7), pages 1-13, March.
    6. Krzysztof Górecki & Przemysław Ptak, 2021. "Compact Modelling of Electrical, Optical and Thermal Properties of Multi-Colour Power LEDs Operating on a Common PCB," Energies, MDPI, vol. 14(5), pages 1-21, February.
    7. Piotr Pracki & Michał Dziedzicki & Paulina Komorzycka, 2020. "Ceiling and Wall Illumination, Utilance, and Power in Interior Lighting," Energies, MDPI, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1539-:d:336774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.