IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1504-d335627.html
   My bibliography  Save this article

Relative Contributions of Clouds and Aerosols to Surface Erythemal UV and Global Horizontal Irradiance in Korea

Author

Listed:
  • Jaemin Kim

    (Department of Atmospheric Sciences, Chungnam National University, Daejeon 34134, Korea)

  • Yun Gon Lee

    (Department of Atmospheric Sciences, Chungnam National University, Daejeon 34134, Korea)

  • Ja-Ho Koo

    (Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Korea)

  • Hanlim Lee

    (Division of Earth Environmental System Science Major of Spatial Information Engineering, Pukyong National University, Busan 48513, Korea)

Abstract

The attenuating effects of clouds and aerosols on global horizontal irradiance (GHI) and ultraviolet erythemal irradiance (UVER) were evaluated and compared using data from four sites in South Korea (Gangneung, Pohang, Mokpo, and Gosan) for the period 2005–2016. It was found that GHI and UVER are affected differently by various attenuating factors, resulting in an increase in the ratio of UVER to GHI with a decrease in the clearness index of GHI. A comparative analysis of the clearness indices of GHI and UVER identified an almost linear relationship between two transmittances by applying UVER with fixed slant ozone ( UVER 300 ) and there was a latitudinal difference in the relationship. Some nonlinearity remained in this relationship, which suggests a contribution by other factors such as clouds and aerosols. Variations of the UVER 300 ratio to GHI with cloud cover and aerosol optical depth were analyzed. The ratio increased with cloud cover and decreased with aerosol optical depth, indicating that clouds attenuate GHI more efficiently than UVER and that the attenuation by aerosols is greater for UVER than for GHI. A multiple linear regression analysis of the clearness indices of GHI and UVER 300 quantitively demonstrates differences in the radiation-reducing effects of clouds and aerosols, with some regional differences by site that can be attributed to local climatic characteristics in South Korea.

Suggested Citation

  • Jaemin Kim & Yun Gon Lee & Ja-Ho Koo & Hanlim Lee, 2020. "Relative Contributions of Clouds and Aerosols to Surface Erythemal UV and Global Horizontal Irradiance in Korea," Energies, MDPI, vol. 13(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1504-:d:335627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murillo, W & Cañada, J & Pedrós, G, 2003. "Correlation between global ultraviolet (290–385nm) and global irradiation in Valencia and Cordoba (Spain)," Renewable Energy, Elsevier, vol. 28(3), pages 409-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    2. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    3. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    4. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1504-:d:335627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.