IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p962-d323320.html
   My bibliography  Save this article

Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine

Author

Listed:
  • Zahoor Ul Islam

    (Department of Physics, International Islamic University Islamabad, Islamabad 44000, Pakistan)

  • Muhammad Tahir

    (Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan
    Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Waqar Adil Syed

    (Department of Physics, International Islamic University Islamabad, Islamabad 44000, Pakistan)

  • Fakhra Aziz

    (Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120, Pakistan)

  • Fazal Wahab

    (Department of Physics, Karakoram International University, Gilgit Baltistan 15100, Pakistan)

  • Suhana Mohd Said

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Mahidur R. Sarker

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Sawal Hamid Md Ali

    (Department of Electric, Electronics and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohd Faizul Mohd Sabri

    (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

Abstract

Herein, we report thin films’ characterizations and photovoltaic properties of an organic semiconductor zinc phthalocyanine (ZnPc). To study the former, a 100 nm thick film of ZnPc is thermally deposited on quartz glass by using vacuum thermal evaporator at 1.5 × 10 −6 mbar. Surface features of the ZnPc film are studied by using scanning electron microscope (SEM) with in situ energy dispersive x-ray spectroscopy (EDS) analysis and atomic force microscope (AFM) which reveal uniform film growth, grain sizes and shapes with slight random distribution of the grains. Ultraviolet-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopies are carried out of the ZnPc thin films to measure its optical bandgap (1.55 eV and 3.08 eV) as well as to study chemical composition and bond-dynamics. To explore photovoltaic properties of ZnPc, an Ag/ZnPc/PEDOT:PSS/ITO cell is fabricated by spin coating a 20 nm thick film of hole transport layer (HTL)—poly-(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) (PEDOT:PSS)—on indium tin oxide (ITO) substrate followed by thermal evaporation of a 100 nm layer of ZnPc and 50 nm silver (Ag) electrode. Current-voltage ( I-V ) properties of the fabricated device are measured in dark as well as under illumination at standard testing conditions (STC), i.e., 300 K, 100 mW/cm 2 and 1.5 AM global by using solar simulator. The key device parameters such as ideality factor ( n ), barrier height ( ϕ b ), junction/interfacial resistance ( R s ) and forward current rectification of the device are measured in the dark which exhibit the formation of depletion region. The Ag/ZnPc/PEDOT:PSS/ITO device demonstrates good photovoltaic characteristics by offering 0.48 fill factor (FF) and 1.28 ± 0.05% power conversion efficiency (PCE), η.

Suggested Citation

  • Zahoor Ul Islam & Muhammad Tahir & Waqar Adil Syed & Fakhra Aziz & Fazal Wahab & Suhana Mohd Said & Mahidur R. Sarker & Sawal Hamid Md Ali & Mohd Faizul Mohd Sabri, 2020. "Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine," Energies, MDPI, vol. 13(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:962-:d:323320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guihua Li & Jingjing Tang & Runsheng Tang, 2019. "Performance and Design Optimization of a One-Axis Multiple Positions Sun-Tracked V-trough for Photovoltaic Applications," Energies, MDPI, vol. 12(6), pages 1-23, March.
    2. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinlei Wu & Yuanpeng Zhang & Kaihang Shi & Xiaoling Ma & Fujun Zhang, 2023. "Advanced Progress of Organic Photovoltaics," Energies, MDPI, vol. 16(3), pages 1-3, January.
    2. Sayed Izaz Uddin & Muhammad Tahir & Fakhra Aziz & Mahidur R. Sarker & Fida Muhammad & Dil Nawaz Khan & Sawal Hamid Md Ali, 2020. "Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer," Energies, MDPI, vol. 13(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    2. Juliano C. L. da Silva & Thales Ramos & Manoel F. Medeiros Júnior, 2021. "Modeling and Harmonic Impact Mitigation of Grid-Connected SCIG Driven by an Electromagnetic Frequency Regulator," Energies, MDPI, vol. 14(15), pages 1-21, July.
    3. Daniel C. C. Crisóstomo & Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer Villarreal & Ricardo Pinheiro & Andrés Salazar, 2022. "Fuzzy Control Strategy Applied to an Electromagnetic Frequency Regulator in Wind Generation Systems," Energies, MDPI, vol. 15(19), pages 1-21, September.
    4. Piotr Drozdowski & Dariusz Cholewa, 2021. "Voltage Control of Multiphase Cage Induction Generators at a Speed Varying over a Wide Range," Energies, MDPI, vol. 14(21), pages 1-24, October.
    5. Thiago F. do Nascimento & Evandro A. D. F. Nunes & Elmer R. L. Villarreal & Ricardo F. Pinheiro & Andrés O. Salazar, 2022. "Performance Analysis of an Electromagnetic Frequency Regulator under Parametric Variations for Wind System Applications," Energies, MDPI, vol. 15(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:962-:d:323320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.