IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p933-d322751.html
   My bibliography  Save this article

Two Phase Anaerobic Digestion System of Municipal Solid Waste by Utilizing Microaeration and Granular Activated Carbon

Author

Listed:
  • Fernando Canul Bacab

    (Renewable Energy Unit, Yucatan Center for Scientific Research, Mérida 97203, Mexico)

  • Elda España Gamboa

    (Renewable Energy Department, Higher Technological Institute of Motul, Motul 97205, Mexico)

  • Juan Enrique Ruiz Espinoza

    (Faculty of Chemical Engineering, Autonomous University of Yucatan, Periférico Norte, Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, C.P. Mérida 97203, Mexico)

  • Rosa M Leal-Bautista

    (Water Research Unit, Yucatan Center for Scientific Research, Cancún Q. Roo 77524, Mexico)

  • Raúl Tapia Tussell

    (Renewable Energy Unit, Yucatan Center for Scientific Research, Mérida 97203, Mexico)

  • Jorge Domínguez Maldonado

    (Renewable Energy Unit, Yucatan Center for Scientific Research, Mérida 97203, Mexico)

  • Blondy Canto Canché

    (Biotechnology Unit, Yucatán Center for Scientific Research (CICY), Mérida 97203, Mexico)

  • Liliana Alzate-Gaviria

    (Renewable Energy Unit, Yucatan Center for Scientific Research, Mérida 97203, Mexico)

Abstract

In an anaerobic digestion (AD) process, the hydrolysis phase is often limited when substrates with high concentrations of solids are used. We hypothesized that applying micro-aeration in the hydrolysis phase and the application of granular activated carbon (GAC) in the methanogenesis phase could make the AD process more efficient. A packed bed reactor (PBR) coupled with an up-flow anaerobic sludge blanket (UASB) was conducted, and its effects on methane generation were evaluated. The micro-aeration rate applied in PBR was 254 L-air/kg-Total solids (TS)-d was compared with a control reactor. Micro-aeration showed that it reduced the hydrolysis time and increased the organic matter solubilization as chemical oxygen demand (COD) increasing 200%, with a volatile fatty acids (VFAs) increment higher than 300%, compared to the control reactor (without aeration). Our findings revealed that the implementations of microaeration and GAC in the two-phase AD system could enhance methane production by reducing hydrolysis time, increasing solid waste solubilization.

Suggested Citation

  • Fernando Canul Bacab & Elda España Gamboa & Juan Enrique Ruiz Espinoza & Rosa M Leal-Bautista & Raúl Tapia Tussell & Jorge Domínguez Maldonado & Blondy Canto Canché & Liliana Alzate-Gaviria, 2020. "Two Phase Anaerobic Digestion System of Municipal Solid Waste by Utilizing Microaeration and Granular Activated Carbon," Energies, MDPI, vol. 13(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:933-:d:322751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parawira, W. & Murto, M. & Zvauya, R. & Mattiasson, B., 2006. "Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate," Renewable Energy, Elsevier, vol. 31(6), pages 893-903.
    2. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    3. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    4. Yiming Gao & Xiaoying Kong & Tao Xing & Yongming Sun & Yi Zhang & Xingjian Luo & Yong Sun, 2018. "Digestion Performance and Microbial Metabolic Mechanism in Thermophilic and Mesophilic Anaerobic Digesters Exposed to Elevated Loadings of Organic Fraction of Municipal Solid Waste," Energies, MDPI, vol. 11(4), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejene Tsegaye & Mohammed Mazharuddin Khan & Seyoum Leta, 2023. "Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    2. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. He, Huiban & Wang, Ziyu & Wang, Weiwei & He, Haoxing & Yan, Jing & Wang, Hongliang & Cui, Zongjun & Yuan, Xufeng, 2024. "Mitigating short-circuits through synergistic temperature and hydraulic retention time control for enhancing methane yield in continuous stirred-tank reactors," Energy, Elsevier, vol. 289(C).
    4. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    5. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    6. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    7. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    9. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Zhu, Xianpu & Zhang, Yujia & Yellezuome, Dominic & Wang, Zengzhen & Liu, Xuwei & Liu, Ronghou, 2024. "The effects of co-supplemented Fe, Co and Ni on Fe bioavailability and microbial community structure in mesophilic food waste anaerobic digestion by using response surface methodology," Renewable Energy, Elsevier, vol. 229(C).
    11. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Experimental investigation of hydrate formation kinetics and microscopic properties by a synthesized ternary gas mixture with combination additives," Energy, Elsevier, vol. 259(C).
    12. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    13. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    14. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    16. Damaceno, Felippe Martins & Chiarelotto, Maico & Pires Salcedo Restrepo, Juan C. & Buligon, Eduardo Luiz & Costa, Luiz Antonio de Mendonça & de Lucas Junior, Jorge & Costa, Mônica Sarolli Silva de Men, 2019. "Anaerobic co-digestion of sludge cake from poultry slaughtering wastewater treatment and sweet potato: Energy and nutrient recovery," Renewable Energy, Elsevier, vol. 133(C), pages 489-499.
    17. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    18. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    20. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:933-:d:322751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.