IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p916-d322013.html
   My bibliography  Save this article

Technology Innovation System Analysis of Electricity Smart Metering in the European Union

Author

Listed:
  • Maksymilian Kochański

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland
    Research and Innovation Centre Pro-Akademia; 95-050 Konstantynów Łódzki, Poland)

  • Katarzyna Korczak

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland
    Research and Innovation Centre Pro-Akademia; 95-050 Konstantynów Łódzki, Poland)

  • Tadeusz Skoczkowski

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

Between 2018 and 2023 the penetration rate of electricity smart meters in the European Union (EU) is expected to grow from approximately 44% to 71%. The unprecedently rapid development of smart metering (SM) as an ICT-enabled technological novelty is progressing in a complex, multi-actor innovation system, which is strongly driven by EU-level institutions and policies. This paper presents the comprehensive Technology Innovation System (TIS) analysis of electricity SM development in the EU, with a focus placed on regulatory aspects. The article identifies the key elements of the SM innovation system (technologies and infrastructures; actors and networks; institutions and policies) and characterises their interaction based on an in-depth desk research and a critical assessment of regulations, statistics and primary and grey literature sources (e.g., market reports). The main enablers and barriers for EU-level SM TIS development are studied. The major driving force for EU-level SM TIS is the clear, yet evolving vision of EU-level actors for the SM deployment, founded on the grounds of energy conservation and empowerment of customers. On the other hand, the major inhibitor is the insufficient regulatory framework for roll-outs at the level of a Member State, which does not fully ensure interoperability, data protection and security standards or organisational effectiveness.

Suggested Citation

  • Maksymilian Kochański & Katarzyna Korczak & Tadeusz Skoczkowski, 2020. "Technology Innovation System Analysis of Electricity Smart Metering in the European Union," Energies, MDPI, vol. 13(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:916-:d:322013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    2. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    3. Nikoleta Andreadou & Miguel Olariaga Guardiola & Gianluca Fulli, 2016. "Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications," Energies, MDPI, vol. 9(5), pages 1-35, May.
    4. Colak, Ilhami & Fulli, Gianluca & Sagiroglu, Seref & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2015. "Smart grid projects in Europe: Current status, maturity and future scenarios," Applied Energy, Elsevier, vol. 152(C), pages 58-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Kochański & Katarzyna Korczak & Tadeusz Skoczkowski, 2021. "Enablers and Barriers in the Market-Driven Rollout of Smart Metering: Polish Technology Innovation System Analysis," Energies, MDPI, vol. 14(17), pages 1-28, August.
    2. Blind, Knut, 2024. "The role of the quality infrastructure within socio-technical transformations: A European perspective," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    3. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    4. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    5. Lina Montuori & Manuel Alcázar-Ortega, 2021. "District Heating as Demand Response Aggregator: Estimation of the Flexible Potential in the Italian Peninsula," Energies, MDPI, vol. 14(21), pages 1-19, October.
    6. Fouad, M.M. & Kanarachos, Stratis & Allam, Mahmoud, 2022. "Perceptions of consumers towards smart and sustainable energy market services: The role of early adopters," Renewable Energy, Elsevier, vol. 187(C), pages 14-33.
    7. Emilio Ghiani & Riccardo Trevisan & Gian Luca Rosetti & Sergio Olivero & Luca Barbero, 2022. "Energetic and Economic Performances of the Energy Community of Magliano Alpi after One Year of Piloting," Energies, MDPI, vol. 15(19), pages 1-19, October.
    8. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    2. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    3. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    4. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    5. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    6. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    7. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    8. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    10. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    11. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    12. Hall, Stephen & Foxon, Timothy J., 2014. "Values in the Smart Grid: The co-evolving political economy of smart distribution," Energy Policy, Elsevier, vol. 74(C), pages 600-609.
    13. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Markard, Jochen & Erlinghagen, Sabine, 2017. "Technology users and standardization: Game changing strategies in the field of smart meter technology," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 226-235.
    15. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    16. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    17. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    18. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    19. Belton, Cameron A. & Lunn, Peter D., 2020. "Smart choices? An experimental study of smart meters and time-of-use tariffs in Ireland," Energy Policy, Elsevier, vol. 140(C).
    20. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:916-:d:322013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.