IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p753-d318302.html
   My bibliography  Save this article

Optimal Placement, Sizing and Coordination of FACTS Devices in Transmission Network Using Whale Optimization Algorithm

Author

Listed:
  • Muhammad Nadeem

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Kashif Imran

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Abraiz Khattak

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Abasin Ulasyar

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Anamitra Pal

    (School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA)

  • Muhammad Zulqarnain Zeb

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Atif Naveed Khan

    (US Pakistan Center for Advance Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan)

  • Malhar Padhee

    (School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA)

Abstract

Flexible AC Transmission Systems (FACTS) play an important role in minimizing power losses and voltage deviations while increasing the real power transfer capacity of transmission lines. The extent to which these devices can provide benefits to the transmission network depend on their optimal location and sizing. However, finding appropriate locations and sizes of these devices in an electrical network is difficult since it is a nonlinear problem. This paper proposes a technique for the optimal placement and sizing of FACTS, namely the Thyristor-Controlled Series Compensators (TCSCs), Shunt VARs Compensators (SVCs), and Unified Power Flows Controllers (UPFCs). To find the optimal locations of these devices in a network, weak buses and lines are determined by constructing PV curves of load buses, and through the line stability index. Then, the whale optimization algorithm (WOA) is employed not only to find an ideal ratings for these devices but also the optimal coordination of SVC, TCSC, and UPFC with the reactive power sources already present in the network (tap settings of transformers and reactive power from generators). The objective here is the minimization of the operating cost of the system that consists of active power losses and FACTS devices cost. The proposed method is applied to the IEEE 14 and 30 bus systems. The presented technique is also compared with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The findings showed that total system operating costs and transmission line losses were considerably reduced by WOA as compared to existing metaheuristic optimization techniques.

Suggested Citation

  • Muhammad Nadeem & Kashif Imran & Abraiz Khattak & Abasin Ulasyar & Anamitra Pal & Muhammad Zulqarnain Zeb & Atif Naveed Khan & Malhar Padhee, 2020. "Optimal Placement, Sizing and Coordination of FACTS Devices in Transmission Network Using Whale Optimization Algorithm," Energies, MDPI, vol. 13(3), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:753-:d:318302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2019. "An approach for long term economic operations of competitive power market by optimal combined scheduling of wind turbines and FACTS controllers," Energy, Elsevier, vol. 181(C), pages 709-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hana Merah & Abdelmalek Gacem & Djilani Ben Attous & Abderezak Lashab & Francisco Jurado & Mariam A. Sameh, 2022. "Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    2. Marwa Al-Saidi & Abdullah Al-Badi & Ahmet Onen & Abdelsalam Elhaffar, 2023. "Optimal Location and Size of Static Var Compensators (SVC) to Enhance the Voltage Profile on the Main Interconnected System in Oman," Energies, MDPI, vol. 16(19), pages 1-15, September.
    3. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    5. Mohsen Khalili & Touhid Poursheykh Aliasghari & Ebrahim Seifi Najmi & Almoataz Y. Abdelaziz & A. Abu-Siada & Saber Arabi Nowdeh, 2022. "Optimal Allocation of Distributed Thyristor Controlled Series Compensators in Power System Considering Overload, Voltage, and Losses with Reliability Effect," Energies, MDPI, vol. 15(20), pages 1-25, October.
    6. Atif Naveed Khan & Kashif Imran & Muhammad Nadeem & Anamitra Pal & Abraiz Khattak & Kafait Ullah & Muhammad Waseem Younas & Muhammad Shahzad Younis, 2021. "Ensuring Reliable Operation of Electricity Grid by Placement of FACTS Devices for Developing Countries," Energies, MDPI, vol. 14(8), pages 1-21, April.
    7. Manuel Jaramillo & Diego Carrión & Jorge Muñoz, 2022. "A Deep Neural Network as a Strategy for Optimal Sizing and Location of Reactive Compensation Considering Power Consumption Uncertainties," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Nomihla Wandile Ndlela & Innocent Ewean Davidson & Katleho Moloi, 2023. "Power Planning for a Reliable Southern African Regional Grid," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewaoche John Okampo & Nnamdi Nwulu & Pitshou N. Bokoro, 2022. "Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    2. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    3. Mirzapour, Omid & Rui, Xinyang & Sahraei-Ardakani, Mostafa, 2023. "Transmission impedance control impacts on carbon emissions and renewable energy curtailment," Energy, Elsevier, vol. 278(C).
    4. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    5. Ganesh Sampatrao Patil & Anwar Mulla & Subhojit Dawn & Taha Selim Ustun, 2022. "Profit Maximization with Imbalance Cost Improvement by Solar PV-Battery Hybrid System in Deregulated Power Market," Energies, MDPI, vol. 15(14), pages 1-21, July.
    6. Marwa Al-Saidi & Abdullah Al-Badi & Ahmet Onen & Abdelsalam Elhaffar, 2023. "Optimal Location and Size of Static Var Compensators (SVC) to Enhance the Voltage Profile on the Main Interconnected System in Oman," Energies, MDPI, vol. 16(19), pages 1-15, September.
    7. Ningxuan Guo & Yinan Wang & Gangfeng Yan & Jian Hou, 2020. "Non-Cooperative Game in Block Bidding Markets Considering Demand Response," Energies, MDPI, vol. 13(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:753-:d:318302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.