Numerical Research of the Modification of the Combustion System in the OP 650 Boiler
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.
- Chen, Shinan & He, Boshu & He, Di & Cao, Yang & Ding, Guangchao & Liu, Xuan & Duan, Zhipeng & Zhang, Xin & Song, Jingge & Li, Xuezheng, 2017. "Numerical investigations on different tangential arrangements of burners for a 600 MW utility boiler," Energy, Elsevier, vol. 122(C), pages 287-300.
- Marco Torresi & Francesco Fornarelli & Bernardo Fortunato & Sergio Mario Camporeale & Alessandro Saponaro, 2017. "Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NO x Pulverized Coal Burner," Energies, MDPI, vol. 10(1), pages 1-24, January.
- Hyunbin Jo & Kiseop Kang & Jongkeun Park & Changkook Ryu & Hyunsoo Ahn & Younggun Go, 2019. "Optimization of Air Distribution to Reduce NOx Emission and Unburned Carbon for the Retrofit of a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 12(17), pages 1-20, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tomasz Hardy & Sławomir Kakietek & Krzysztof Halawa & Krzysztof Mościcki & Tomasz Janda, 2020. "Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks," Energies, MDPI, vol. 13(12), pages 1-17, June.
- Bartłomiej Hernik, 2022. "Numerical Research of Flue Gas Denitrification Using the SNCR Method in an OP 650 Boiler," Energies, MDPI, vol. 15(9), pages 1-21, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Zhenhua & Chen, Zhichao & Zhang, Bo & Gao, Xuelin & Li, Jiawei & Qiao, Yanyu & Li, Zhengqi, 2023. "Study on the slagging trends of the pre-combustion chamber in industrial pulverized coal boiler under different excess air coefficients by CFD numerical simulation," Energy, Elsevier, vol. 264(C).
- Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
- Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
- Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
- Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
- Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
- Darbandi, Masoud & Fatin, Ali & Bordbar, Hadi, 2020. "Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments," Energy, Elsevier, vol. 199(C).
- Qilei Ma & Wenqi Zhong & Xi Chen & Jianhua Li & Hui Zhang, 2021. "Numerical Simulation of the Effects of Oil Gun Location and Oil Feed Rate on Coal Ignition and Burner Wall Temperature in a Tiny Oil Ignition Burner," Energies, MDPI, vol. 14(22), pages 1-16, November.
- Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
- Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
- Aliya Askarova & Saltanat Bolegenova & Valeriy Maximov & Symbat Bolegenova & Nariman Askarov & Aizhan Nugymanova, 2021. "Computer Technologies of 3D Modeling by Combustion Processes to Create Effective Methods of Burning Solid Fuel and Reduce Harmful Dust and Gas Emissions into the Atmosphere," Energies, MDPI, vol. 14(5), pages 1-22, February.
- Zhou, Jing & Zhu, Meng & Xu, Kai & Su, Sheng & Tang, Yifang & Hu, Song & Wang, Yi & Xu, Jun & He, Limo & Xiang, Jun, 2020. "Key issues and innovative double-tangential circular boiler configurations for the 1000 MW coal-fired supercritical carbon dioxide power plant," Energy, Elsevier, vol. 199(C).
- Rahimipetroudi, Iman & Rashid, Kashif & Yang, Je Bok & Dong, Sang Keun, 2021. "Development of environment-friendly dual fuel pulverized coal-natural gas combustion technology for the co-firing power plant boiler: Experimental and numerical analysis," Energy, Elsevier, vol. 228(C).
- Andrey Rogalev & Nikolay Rogalev & Vladimir Kindra & Ivan Komarov & Olga Zlyvko, 2021. "Research and Development of the Oxy-Fuel Combustion Power Cycles with CO 2 Recirculation," Energies, MDPI, vol. 14(10), pages 1-18, May.
- Zhang, Xiaoyu & Zhu, Shujun & Zhu, Jianguo & Liu, Yuhua & Zhang, Jiahang & Hui, Jicheng & Ding, Hongliang & Cao, Xiaoyang & Lyu, Qinggang, 2023. "Preheating and combustion characteristics of anthracite under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 274(C).
- Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
- Chen, Zhichao & Yuan, Zhenhua & Zhang, Bo & Qiao, Yanyu & Li, Jiawei & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of secondary air mass flow rate ratio on the slagging characteristics of the pre-combustion chamber in industrial pulverized coal-fired boiler," Energy, Elsevier, vol. 251(C).
- Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
- Ling, Zhongqian & Ling, Bo & Kuang, Min & Li, Zhengqi & Lu, Ye, 2017. "Comparison of airflow, coal combustion, NOx emissions, and slagging characteristics among three large-scale MBEL down-fired boilers manufactured at different times," Applied Energy, Elsevier, vol. 187(C), pages 689-705.
- Li, Zixiang & Miao, Zhengqing & Han, Baoju & Qiao, Xinqi, 2022. "Effects of the number of wall mounted burners on performance of a 660 MW tangentially fired lignite boiler with annularly combined multiple airflows," Energy, Elsevier, vol. 255(C).
More about this item
Keywords
coal combustion; swirl burner; boilers; numerical simulations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:725-:d:317694. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.