IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p696-d316984.html
   My bibliography  Save this article

Robust Economic Model Predictive Control Based on a Zonotope and Local Feedback Controller for Energy Dispatch in Smart-Grids Considering Demand Uncertainty

Author

Listed:
  • Mohamadou Nassourou

    (Research Center for Supervision, Safety and Automatic Control (CS2AC), Rambla Sant Nebridi, s/n, 08022 Terrassa, Spain
    Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Carrer Llorens Artigas, 4-6, 08028 Barcelona, Spain)

  • Joaquim Blesa

    (Research Center for Supervision, Safety and Automatic Control (CS2AC), Rambla Sant Nebridi, s/n, 08022 Terrassa, Spain
    Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Carrer Llorens Artigas, 4-6, 08028 Barcelona, Spain
    Serra Húnter Fellow, Automatic Control Department (ESAII), Technical University of Catalonia (UPC), Pau Gargallo 5, 08028 Barcelona, Spain)

  • Vicenç Puig

    (Research Center for Supervision, Safety and Automatic Control (CS2AC), Rambla Sant Nebridi, s/n, 08022 Terrassa, Spain
    Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Carrer Llorens Artigas, 4-6, 08028 Barcelona, Spain)

Abstract

Electrical smart grids are complex MIMO systems whose operation can be noticeably affected by the presence of uncertainties such as load demand uncertainty. In this paper, based on a restricted representation of the demand uncertainty, we propose a robust economic model predictive control method that guarantees an optimal energy dispatch in a smart micro-grid. Load demands are uncertain, but viewed as bounded. The proposed method first decomposes control inputs into dependent and independent components, and then tackles the effect of demand uncertainty by tightening the system constraints as the uncertainty propagates along the prediction horizon using interval arithmetic and local state feedback control law. The tightened constraints’ upper and lower limits are computed off-line. The proposed method guarantees stability through a periodic terminal state constraint. The method is faster and simpler compared to other approaches based on Closed-loop min–max techniques. The applicability of the proposed approach is demonstrated using a smart micro-grid that comprises a wind generator, some photovoltaic (PV) panels, a diesel generator, a hydroelectric generator and some storage devices linked via two DC-buses, from which load demands can be adequately satisfied.

Suggested Citation

  • Mohamadou Nassourou & Joaquim Blesa & Vicenç Puig, 2020. "Robust Economic Model Predictive Control Based on a Zonotope and Local Feedback Controller for Energy Dispatch in Smart-Grids Considering Demand Uncertainty," Energies, MDPI, vol. 13(3), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:696-:d:316984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Majid Hussain & Rizwan Akram & Zulfiqar Ali Memon & Mian Hammad Nazir & Waqas Javed & Muhammad Siddique, 2021. "Demand Side Management Techniques for Home Energy Management Systems for Smart Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    2. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    3. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    4. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    6. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).
    7. Tang, Hong & Wang, Shengwei, 2022. "A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    2. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    5. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    6. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    7. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    8. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    9. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    10. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    11. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    13. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    14. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    15. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    16. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    17. Giovanni Paolo Crespi & Davide Radi & Matteo Rocca, 2017. "Robust games: theory and application to a Cournot duopoly model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 177-198, November.
    18. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.
    19. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    20. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:696-:d:316984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.