IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p520-d311334.html
   My bibliography  Save this article

A Model of Moist Polymer Foam and a Scheme for the Calculation of Its Thermal Conductivity

Author

Listed:
  • Vadzim I. Nikitsin

    (Faculty of Technical Sciences, Pope John Paul II State School of Higher Education in Biala Podlaska, 21-500 Biała Podlaska, Poland)

  • Abdrahman Alsabry

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Civil Engineering, University of Zielona Gora, 65-417 Zielona Góra, Poland)

  • Valery A. Kofanov

    (Department of Computer Science and Applied Mathematics, Brest State Technical University, 224017 Brest, Belarus)

  • Beata Backiel-Brzozowska

    (Faculty of Civil Engineering and Environmental Sciences, Institute of Civil Engineering and Transport, Bialystok University of Technology, 15-351 Białystok, Poland)

  • Paweł Truszkiewicz

    (Department of Foreign Languages, University of Zielona Gora, 65-417 Zielona Góra, Poland)

Abstract

This paper proposes a method for determining an effective value of the thermal conductivity for moist, highly porous rigid polymer foams. The model of moist foam based on an ordered structure with interpenetrating components was developed in accordance with the moisture distribution in the pore space. With small moisture content, isolated water inclusions are formed, and the pore space is considered as a binary system (vapor-gas mixture and water) with isolated inclusions. With an increase in moisture content, isolated water inclusions merge, forming a continuous layer, and pore space is considered as a binary system of interpenetrating components. The thermal conductivity of the vapor-gas mixture is represented as the sum of the thermal conductivity of the dry gas and the thermal conductivity of the vapor caused by the diffusion transfer of vapor in the pore space, taking into account the coefficient of vapor diffusion resistance. Using the proposed scheme of calculation, a computational experiment was performed to establish the influence of the vapor diffusion, moisture content, and average temperature of the foam on its thermal conductivity.

Suggested Citation

  • Vadzim I. Nikitsin & Abdrahman Alsabry & Valery A. Kofanov & Beata Backiel-Brzozowska & Paweł Truszkiewicz, 2020. "A Model of Moist Polymer Foam and a Scheme for the Calculation of Its Thermal Conductivity," Energies, MDPI, vol. 13(3), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:520-:d:311334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/520/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdrahman Alsabry & Beata Backiel-Brzozowska & Vadzim I. Nikitsin & Serafim K. Nikitsin, 2022. "Equations for Calculating the Thermal Conductivity of Capillary-Porous Materials with over Sorption Moisture Content," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    2. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    3. Abdrahman Alsabry & Beata Backiel-Brzozowska & Vadzim I. Nikitsin, 2020. "Dependencies for Determining the Thermal Conductivity of Moist Capillary-Porous Materials," Energies, MDPI, vol. 13(12), pages 1-14, June.
    4. Jan Kočí & Robert Černý, 2020. "Special Issue “Recent Developments in Building Physics”," Energies, MDPI, vol. 13(23), pages 1-3, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:520-:d:311334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.