IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p472-d310275.html
   My bibliography  Save this article

Diffusion Characteristics of Solar Beams Radiation Transmitting through Greenhouse Covers in Arid Climates

Author

Listed:
  • Ibrahim Al-Helal

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdullah Alsadon

    (Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Mohamed Shady

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdullah Ibrahim

    (Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Ahmed Abdel-Ghany

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

In hot and sunny regions, extensive solar radiation transmitted into greenhouses makes it essential to select a greenhouse cover with specific characteristics. Reflection and diffusion are the most important properties of covers for reducing solar heating load and scattering solar beams for better growth of plants. Three types of plastic films that are commonly used for covering greenhouses in arid climate were selected for this study. These were reflective-diffusive ( RDF ), diffusive ( DF ), and locally produced ( CF ) films. The films were used to cover three identical twin-span greenhouse models; the radiation components, air temperature ( T i ), and relative humidity ( RH i ) were measured in each model. Transmission of solar radiation through each cover was characterized by determining: (i) The beam that is diffused during transmission, and (ii) the unscattered beam that is transmitted directly through the film. The results show that the diffuse radiation transmitted through the DF , RDF , and CF covers was enhanced, respectively by 77%, 85%, and 109% as a result of diffusing 34%, 33%, and 43% of the transmitted beam radiation by the DF , RDF , and CF covers, respectively during transmission. The diffusive nature of the tested covers increased the ratio of diffuse to direct beam radiation ( D/B ) from 0.3 outside the greenhouse to 0.77, 0.69, and 0.95 inside a greenhouse covered with DF , RDF , and CF , respectively. At around noon, the CF cover decreased T i by about 5–10 °C and increased RH i by about 3%–5% compared to those under the DF and RDF covers. However, DF and RDF covers showed almost similar effects in T i and RH i . The low-price CF cover showed higher diffusive-radiative properties than DF and RDF covers and can serve effectively in arid climate as an alternative covering material.

Suggested Citation

  • Ibrahim Al-Helal & Abdullah Alsadon & Mohamed Shady & Abdullah Ibrahim & Ahmed Abdel-Ghany, 2020. "Diffusion Characteristics of Solar Beams Radiation Transmitting through Greenhouse Covers in Arid Climates," Energies, MDPI, vol. 13(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:472-:d:310275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mobtaker, Hassan Ghasemi & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2019. "Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation," Renewable Energy, Elsevier, vol. 135(C), pages 88-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Nafiul Islam & Md Zafar Iqbal & Mohammod Ali & Md Ashrafuzzaman Gulandaz & Md Shaha Nur Kabir & Seung-Ho Jang & Sun-Ok Chung, 2023. "Evaluation of a 0.7 kW Suspension-Type Dehumidifier Module in a Closed Chamber and in a Small Greenhouse," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    2. Chunhui Zhang & Haiyang Liu & Chunguang Wang & Zheying Zong & Haichao Wang & Xiaodong Zhao & Shuai Wang & Yanan Li, 2023. "Testing and Analysis on the Spatial and Temporal Distribution of Light Intensity and CO 2 Concentration in Solar Greenhouse," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    3. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).
    4. Xu, Demin & Fei, Shuaipeng & Wang, Zhi & Zhu, Jinyu & Ma, Yuntao, 2024. "Optimum design of Chinese solar greenhouses for maximum energy availability," Energy, Elsevier, vol. 304(C).
    5. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    6. Serkan Erdem & Cenk Onan, 2024. "Investigation of Chinese-Style Greenhouse Usage Across Europe," Energies, MDPI, vol. 17(21), pages 1-15, October.
    7. Shuyao Dong & Md Shamim Ahamed & Chengwei Ma & Huiqing Guo, 2021. "A Time-Dependent Model for Predicting Thermal Environment of Mono-Slope Solar Greenhouses in Cold Regions," Energies, MDPI, vol. 14(18), pages 1-19, September.
    8. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
    9. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    10. Saedi, Ali & Jahangiri, Ali & Ameri, Mohammad & Asadi, Farzad, 2022. "Feasibility study and 3E analysis of blowdown heat recovery in a combined cycle power plant for utilization in Organic Rankine Cycle and greenhouse heating," Energy, Elsevier, vol. 260(C).
    11. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.
    12. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    14. Li, Yiming & Yan, Jun & Li, Zongze & He, Ming & Liu, Xingan & Li, Tianlai, 2024. "A globalized methodology of energy-saving solar greenhouse design in high latitudes," Energy, Elsevier, vol. 304(C).
    15. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    16. Xiao Wu & Hong Li & Siyu Sang & Anhui He & Yimei Re & Hongjun Xu, 2023. "Performance Analysis and Selection of Chinese Solar Greenhouses in Xinjiang Desert Area," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    17. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    18. Gauravkumar Gadhesaria & Chinmay Desai & Ravi Bhatt & Bashir Salah, 2020. "Thermal Analysis and Experimental Validation of Environmental Condition Inside Greenhouse in Tropical Wet and Dry Climate," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    19. Zhang, Yue & Henke, Michael & Li, Yiming & Yue, Xiang & Xu, Demin & Liu, Xingan & Li, Tianlai, 2020. "High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure," Renewable Energy, Elsevier, vol. 160(C), pages 730-745.
    20. Abdelouhab Labihi & Paul Byrne & Amina Meslem & Florence Collet & Sylvie Prétot, 2023. "Heat Recovery Potential in a Semi-Closed Greenhouse for Tomato Cultivation," Clean Technol., MDPI, vol. 5(4), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:472-:d:310275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.