IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p452-d309823.html
   My bibliography  Save this article

Penalty Based Control Mechanism for Strategic Prosumers in a Distribution Network

Author

Listed:
  • Arnob Ghosh

    (Indian Institute of Technology-Delhi, Mechanical Engineering Department, Bharti School of Telecom Technology and Management, Delhi 110016, India)

  • Vaneet Aggarwal

    (Purdue University, School of Industrial Engineering and School of Electrical and Computer Engineering, West Lafayette, IN 47907, USA)

Abstract

The distribution side of the traditional power grid is changing as the users (known as prosumers) can inject power to the grid. However, uncontrollable injection of power can destabilize the grid. Thus, the stability of the grid must be maintained. Since the prosumers are self-interested entities, they will take their actions to maximize their own pay-offs. We formulate the problem as a non-cooperative game theoretic problem where the magnitude of the voltage must be within an acceptable limit at each node of the power network. Since the power-flow equations must be satisfied at each node, it becomes a coupled constrained game where the constraints are the same across the prosumers. We propose a distributed penalty based algorithm which converges to an equilibrium. In this mechanism, the prosumers are quoted a price based on the active and reactive power drawn or injected to the power grid. The algorithm is easy to implement and it converges to an efficient solution which maximizes the sum of the utilities of the prosumers while maintaining the grid’s stability.

Suggested Citation

  • Arnob Ghosh & Vaneet Aggarwal, 2020. "Penalty Based Control Mechanism for Strategic Prosumers in a Distribution Network," Energies, MDPI, vol. 13(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:452-:d:309823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ikponmwosa Idehen & Shiny Abraham & Gregory V. Murphy, 2018. "A Method for Distributed Control of Reactive Power and Voltage in a Power Grid: A Game-Theoretic Approach," Energies, MDPI, vol. 11(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aviad Navon & Gefen Ben Yosef & Ram Machlev & Shmuel Shapira & Nilanjan Roy Chowdhury & Juri Belikov & Ariel Orda & Yoash Levron, 2020. "Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review," Energies, MDPI, vol. 13(15), pages 1-35, August.
    2. Ovidiu Ivanov & Bogdan-Constantin Neagu & Gheorghe Grigoras & Florina Scarlatache & Mihai Gavrilas, 2021. "A Metaheuristic Algorithm for Flexible Energy Storage Management in Residential Electricity Distribution Grids," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    3. Fernando V. Cerna & Mahdi Pourakbari-Kasmaei & Luizalba S. S. Pinheiro & Ehsan Naderi & Matti Lehtonen & Javier Contreras, 2021. "Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement," Energies, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Liaqat Ali & S. M. Muyeen & Hamed Bizhani & Arindam Ghosh, 2019. "Comparative Study on Game-Theoretic Optimum Sizing and Economical Analysis of a Networked Microgrid," Energies, MDPI, vol. 12(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:452-:d:309823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.