Optimization of Fluidization State of a Circulating Fluidized Bed Boiler for Economical Operation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wang, Qinhui & Luo, Zhongyang & Li, Xuantian & Fang, Mengxiang & Ni, Mingjiang & Cen, Kefa, 1999. "A mathematical model for a circulating fluidized bed (CFB) boiler," Energy, Elsevier, vol. 24(7), pages 633-653.
- Adamczyk, Wojciech P. & Myöhänen, Kari & Hartge, Ernst-Ulrich & Ritvanen, Jouni & Klimanek, Adam & Hyppänen, Timo & Białecki, Ryszard A., 2018. "Generation of data sets for semi-empirical models of circulated fluidized bed boilers using hybrid Euler-Lagrange technique," Energy, Elsevier, vol. 143(C), pages 219-240.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xueshen Wang & Zheng Gan & Shengwei Xin & Chunzhen Yang, 2023. "Study on Gas–Solid Two–Phase Flow Characteristics of One–Furnace with Two–Tower Semi–Dry Desulfurization in Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 16(4), pages 1-13, February.
- Jin Yan & Xiaofeng Lu & Changfei Zhang & Qianjun Li & Jinping Wang & Shirong Liu & Xiong Zheng & Xuchen Fan, 2021. "An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(5), pages 1-15, February.
- Li Nie & Jiayi Lu & Qigang Deng & Liming Gong & Dayong Xue & Zhongzhi Yang & Xiaofeng Lu, 2022. "Study on the Uniformity of Secondary Air of a 660 MW Ultra-Supercritical CFB Boiler," Energies, MDPI, vol. 15(10), pages 1-12, May.
- Boyu Deng & Tuo Zhou & Shuangming Zhang & Haowen Wu & Xiaoguo Jiang & Man Zhang & Hairui Yang, 2022. "Safety Analysis on the Heating Surfaces in the 660 MW Ultra-Supercritical CFB Boiler under Sudden Electricity Failure," Energies, MDPI, vol. 15(21), pages 1-15, October.
- Jin Yan & Xiaofeng Lu & Xiong Zheng & Rui Xue & Xiujian Lei & Xuchen Fan & Shirong Liu, 2020. "Experimental Investigations on Lateral Dispersion Coefficients of Fuel Particles in Large-Scale Circulating Fluidized Bed Boilers with Different Coal Feeding Modes," Energies, MDPI, vol. 13(23), pages 1-17, December.
- Boyu Deng & Yi Zhang & Hairui Yang, 2022. "Operation Optimization of Circulating Fluidized Bed Boilers Integration of Variable Renewables," Energies, MDPI, vol. 15(16), pages 1-3, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alobaid, Falah & Peters, Jens & Amro, Rami & Epple, Bernd, 2020. "Dynamic process simulation for Polish lignite combustion in a 1MWth circulating fluidized bed during load changes," Applied Energy, Elsevier, vol. 278(C).
- Adamczyk, Wojciech P. & Myöhänen, Kari & Hartge, Ernst-Ulrich & Ritvanen, Jouni & Klimanek, Adam & Hyppänen, Timo & Białecki, Ryszard A., 2018. "Generation of data sets for semi-empirical models of circulated fluidized bed boilers using hybrid Euler-Lagrange technique," Energy, Elsevier, vol. 143(C), pages 219-240.
- Peng, Wanxi & Liu, Zhenling & Motahari-Nezhad, Mohsen & Banisaeed, Mohammad & Shahraki, Saeid & Beheshti, Mehdi, 2016. "A detailed study of oxy-fuel combustion of biomass in a circulating fluidized bed (CFB) combustor: Evaluation of catalytic performance of metal nanoparticles (Al, Ni) for combustion efficiency improve," Energy, Elsevier, vol. 109(C), pages 1139-1147.
- Grochowalski, Jaroslaw & Jachymek, Piotr & Andrzejczyk, Marek & Klajny, Marcin & Widuch, Agata & Morkisz, Pawel & Hernik, Bartłomiej & Zdeb, Janusz & Adamczyk, Wojciech, 2021. "Towards application of machine learning algorithms for prediction temperature distribution within CFB boiler based on specified operating conditions," Energy, Elsevier, vol. 237(C).
- Zhuo, Xusheng & Lou, Chun & Zhou, Huaichun & Zhuo, Jinxuan & Fu, Peifang, 2018. "Hierarchical Takagi-Sugeno fuzzy hyperbolic tangent static model control for a circulating fluidized bed boiler thermal power unit," Energy, Elsevier, vol. 162(C), pages 910-917.
- Gungor, Afsin, 2009. "Second law analysis of heat transfer surfaces in circulating fluidized beds," Applied Energy, Elsevier, vol. 86(7-8), pages 1344-1353, July.
More about this item
Keywords
CFB boiler; fluidization state optimization; low bed pressure drop; economical operation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:376-:d:308051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.