IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6738-d465634.html
   My bibliography  Save this article

Energy Dependencies in Li-Ion Cells and Their Influence on the Safety of Electric Motor Vehicles and Other Large Battery Packs

Author

Listed:
  • Andrzej Erd

    (Faculty of Transport, Electrical Engineering and Computer Science, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland)

  • Jozef Stoklosa

    (Faculty of Transport and Computer Science, University of Economics and Innovation in Lublin, 20-209 Lublin, Poland)

Abstract

For this work, the specific heat value of a Li-ion cell was determined experimentally as if it were a homogeneous body. The heat absorbed in the cell was compared with the amount of energy contained in the charged cell. It was found that a fully charged cell poses a risk of spontaneous combustion in the event of the release of electrical energy. On the basis of literature research, the combustion process of a lithium cell has been described. The formula was derived for the value of the state of charge that does not pose a risk of self-ignition. In view of the existing threats, the currently used protection against cell damage and tests to demonstrate the safety of cells were analyzed. It has been indicated that currently used battery management systems do not guarantee the safety in a state of developing thermal runaway process. A new active way of protecting cells in a battery has been proposed, consisting in sectoral discharge of cells. The use of this solution would be important for the improvement of fire safety in the automotive industry as well as in mining and in the construction of energy storage.

Suggested Citation

  • Andrzej Erd & Jozef Stoklosa, 2020. "Energy Dependencies in Li-Ion Cells and Their Influence on the Safety of Electric Motor Vehicles and Other Large Battery Packs," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6738-:d:465634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6738/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    2. Denis Pelin & Andrej Brandis & Mario Kovačević & Filip Halak, 2022. "Design and Testing of a Multimode Capable Passive Battery Management System," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6738-:d:465634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.