IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6735-d465477.html
   My bibliography  Save this article

Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview

Author

Listed:
  • Mateusz Góralczyk

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland)

  • Pavlo Krot

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland)

  • Radosław Zimroz

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland)

  • Szymon Ogonowski

    (Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland)

Abstract

Tumbling mills have been widely implemented in many industrial sectors for the grinding of bulk materials. They have been used for decades in the production of fines and in the final stages of ore comminution, where optimal levels for the enrichment particles’ sizes are obtained. Even though these ubiquitous machines of relatively simple construction have been subjected to extensive studies, the industry still struggles with very low energy efficiency of the comminution process. Moreover, obtaining an optimal size for the grinding product particles is crucial for the effectiveness of the following processes and waste production reduction. New, innovative processing methods and machines are being developed to tackle the problem; however, tumbling mills are still most commonly used in all ranges of the industry. Since heavy equipment retrofitting is the most costly approach, process optimization with dedicated models and control systems is the most preferable solution for energy consumption reduction. While the classic technological measurements in mineral processing are well adopted by the industry, nowadays research focuses on new methods of the mill’s internal dynamics analysis and control. This paper presents a retrospective overview of the existing models of internal load motion, an overview of the innovations in process control, and some recent research and industrial approaches from the energy consumption reduction point of view.

Suggested Citation

  • Mateusz Góralczyk & Pavlo Krot & Radosław Zimroz & Szymon Ogonowski, 2020. "Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview," Energies, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6735-:d:465477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6735/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    3. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    4. Sergey Zhironkin & Dawid Szurgacz, 2021. "Mining Technologies Innovative Development: Economic and Sustainable Outlook," Energies, MDPI, vol. 14(24), pages 1-9, December.
    5. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Szymon Ogonowski, 2021. "On-Line Optimization of Energy Consumption in Electromagnetic Mill Installation," Energies, MDPI, vol. 14(9), pages 1-21, April.
    7. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6735-:d:465477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.