IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6650-d463291.html
   My bibliography  Save this article

The Ecological Footprint and Kuznets Environmental Curve in the USMCA Countries: A Method of Moments Quantile Regression Analysis

Author

Listed:
  • Mario Gómez

    (Instituto de Investigaciones Económicas y Empresariales (Economic and Business Research Institute), Universidad Michoacana de San Nicolás de Hidalgo-Ciudad Universitaria-ININEE, Morelia 58030, Mexico)

  • José Carlos Rodríguez

    (Instituto de Investigaciones Económicas y Empresariales (Economic and Business Research Institute), Universidad Michoacana de San Nicolás de Hidalgo-Ciudad Universitaria-ININEE, Morelia 58030, Mexico)

Abstract

This article examines the environmental Kuznets curve for the member countries of the United States–Mexico–Canada Agreement (USMCA), using the ecological footprint as a measure of environmental degradation during 1980–2016. Panel data econometric methods are applied in this research, such as the cross-section dependence, unit root, cointegration and causality tests, and the new method of moments quantile regression (MMQR). The results suggest that the variables are characterized by a cross-section dependence, integrated of order one, and cointegrated. The fully modified ordinary least squares (FMOLS) method shows that renewable energy reduces environmental degradation, and the environmental Kuznets curve is validated. In contrast, patents and trade openness do not show a statistically significant relationship. These results are confirmed with the MMQR, where renewable energy reduces environmental degradation in quantiles from 4 to 6, while the environmental Kuznets curve hypothesis is valid in quantiles from 3 to 9, and patents and trade openness do not show a statistically significant relationship in any quantile. Therefore, it is essential to promote renewable energies, cleaner technologies, and environmental regulations to reduce polluting emissions.

Suggested Citation

  • Mario Gómez & José Carlos Rodríguez, 2020. "The Ecological Footprint and Kuznets Environmental Curve in the USMCA Countries: A Method of Moments Quantile Regression Analysis," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6650-:d:463291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beckerman, Wilfred, 1992. "Economic growth and the environment: Whose growth? whose environment?," World Development, Elsevier, vol. 20(4), pages 481-496, April.
    2. Carolina Jimenez & Luis Moncada & Diego Ochoa-Jimenez & Wilman-Santiago Ochoa-Moreno, 2019. "Kuznets Environmental Curve for Ecuador: An Analysis of the Impact of Economic Growth on the Environment," Sustainability, MDPI, vol. 11(21), pages 1-11, October.
    3. Sencer Atasoy, Burak, 2017. "Testing the environmental Kuznets curve hypothesis across the U.S.: Evidence from panel mean group estimators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 731-747.
    4. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    5. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    6. Mariana I. Zilio, 2012. "Curva de Kuznets ambiental, la validez de sus fundamentos en países en desarrollo," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 35(97), pages 43-54, Abril.
    7. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    8. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    9. Damiaan Persyn & Joakim Westerlund, 2008. "Error-correction–based cointegration tests for panel data," Stata Journal, StataCorp LP, vol. 8(2), pages 232-241, June.
    10. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    11. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    12. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    13. Churchill, Sefa Awaworyi & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2018. "The Environmental Kuznets Curve in the OECD: 1870–2014," Energy Economics, Elsevier, vol. 75(C), pages 389-399.
    14. Panayotou T., 1993. "Empirical tests and policy analysis of environmental degradation at different stages of economic development," ILO Working Papers 992927783402676, International Labour Organization.
    15. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    16. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    17. Sugiawan, Yogi & Managi, Shunsuke, 2016. "The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy," Energy Policy, Elsevier, vol. 98(C), pages 187-198.
    18. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    19. Rafael E. De Hoyos & Vasilis Sarafidis, 2006. "Testing for cross-sectional dependence in panel-data models," Stata Journal, StataCorp LP, vol. 6(4), pages 482-496, December.
    20. José M. Cansino & Rocio Román-Collado & Juan C. Molina, 2019. "Quality of Institutions, Technological Progress, and Pollution Havens in Latin America. An Analysis of the Environmental Kuznets Curve Hypothesis," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    21. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    22. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    23. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    24. M. Hashem Pesaran & Badi H. Baltagi, 2007. "Heterogeneity and cross section dependence in panel data models: theory and applications introduction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 229-232.
    25. Reppelin-Hill, Valerie, 1999. "Trade and Environment: An Empirical Analysis of the Technology Effect in the Steel Industry," Journal of Environmental Economics and Management, Elsevier, vol. 38(3), pages 283-301, November.
    26. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    27. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    28. Raul Arango Miranda & Robert Hausler & Rabindranarth Romero Lopez & Mathias Glaus & Jose Ramon Pasillas-Diaz, 2020. "Testing the Environmental Kuznets Curve Hypothesis in North America’s Free Trade Agreement (NAFTA) Countries," Energies, MDPI, vol. 13(12), pages 1-13, June.
    29. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    30. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    31. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    32. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    33. repec:bla:obuest:v:61:y:1999:i:0:p:653-70 is not listed on IDEAS
    34. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan, Mohammad Maruf & Nan, Su & Waris, Umra, 2024. "Assessing the dynamics among oil consumption, ecological footprint, and renewable energy: Role of institutional quality in major oil-consuming countries," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    2. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    3. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    4. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    5. Acikgoz, Senay & Ben Ali, Mohamed Sami, 2019. "Where does economic growth in the Middle Eastern and North African countries come from?," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 172-183.
    6. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    7. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    8. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    9. Iheonu, Chimere & Asongu, Simplice & Odo, Kingsley & Ojiem, Patrick, 2020. "Financial Sector Development and Investment in Selected ECOWAS Countries: Empirical Evidence using Heterogeneous Panel Data Method," MPRA Paper 107102, University Library of Munich, Germany.
    10. Cristiana Tudor & Robert Sova, 2021. "On the Impact of GDP per Capita, Carbon Intensity and Innovation for Renewable Energy Consumption: Worldwide Evidence," Energies, MDPI, vol. 14(19), pages 1-25, October.
    11. Tiba, Sofien & Belaid, Fateh, 2020. "The pollution concern in the era of globalization: Do the contribution of foreign direct investment and trade openness matter?," Energy Economics, Elsevier, vol. 92(C).
    12. Mirza, Faisal Mehmood & Sinha, Avik & Khan, Javeria Rehman & Kalugina, Olga A. & Zafar, Muhammad Wasif, 2022. "Impact of Energy Efficiency on CO2 Emissions: Empirical Evidence from Developing Countries," MPRA Paper 111923, University Library of Munich, Germany, revised 2022.
    13. Saadaoui, Jamel, 2012. "Déséquilibres globaux, taux de change d’équilibre et modélisation stock-flux cohérente [Global Imbalances, Equilibrium Exchange Rates and Stock-Flow Consistent Modelling]," MPRA Paper 51332, University Library of Munich, Germany.
    14. Acar, Pinar & Berk, Istemi, 2022. "Power infrastructure quality and industrial performance: A panel data analysis on OECD manufacturing sectors," Energy, Elsevier, vol. 239(PC).
    15. Churchill, Sefa Awaworyi & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2018. "The Environmental Kuznets Curve in the OECD: 1870–2014," Energy Economics, Elsevier, vol. 75(C), pages 389-399.
    16. Xuejiao Ma & Qichuan Jiang, 2019. "How to Balance the Trade-off between Economic Development and Climate Change?," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    17. Alvarado, Rafael & Deng, Qiushi & Tillaguango, Brayan & Méndez, Priscila & Bravo, Diana & Chamba, José & Alvarado-Lopez, María & Ahmad, Munir, 2021. "Do economic development and human capital decrease non-renewable energy consumption? Evidence for OECD countries," Energy, Elsevier, vol. 215(PB).
    18. Chimere O. Iheonu & Simplice A. Asongu & Kingsley O. Odo & Patrick K. Ojiem, 2020. "Financial sector development and Investment in selected countries of the Economic Community of West African States: empirical evidence using heterogeneous panel data method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-15, December.
    19. Sung, Bongsuk & Song, Woo-Yong, 2014. "How government policies affect the export dynamics of renewable energy technologies: A subsectoral analysis," Energy, Elsevier, vol. 69(C), pages 843-859.
    20. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6650-:d:463291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.