IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6238-d451838.html
   My bibliography  Save this article

Estimation of Battery Separator Area, Cell Thickness and Diffusion Coefficient Based on Non-Ideal Liquid-Phase Diffusion Modeling

Author

Listed:
  • Bence Csomós

    (Research and Development Center of Technical Sciences, University of Pannonia, 8200 Veszprém, Hungary)

  • Dénes Fodor

    (Research and Development Center of Technical Sciences, University of Pannonia, 8200 Veszprém, Hungary)

  • István Vajda

    (Institute of Automation, Óbuda University, 1034 Budapest, Hungary)

Abstract

The aim of this work is to present a fast and in situ diffusion modeling technique to extract essential electrochemical parameters from liquid-phase diffusion which can be used to implement a realistic battery in a pseudo-2D finite element modeling environment. A generalized Warburg element was used within an extended Randles equivalent circuit to obtain an appropriate fit on non-ideal diffusion impedance. Based on the calculation method presented in this paper, the values of diffusion-related parameters such as the cross-sectional area of the separator A sep , cell thickness L cell as well as liquid-phase and solid-phase diffusion coefficients D l and D s were derived, successfully. A characteristic cell which allowed the exchange current density i 0 and reaction rate constant k 0 to be calculated was also established. The experimental data was measured by electrochemical impedance spectroscopy (EIS), resistivity measurement and the galvanostatic intermittent titration technique (GITT). The results show that our hypothesis to extract essential electrochemical parameters from the tail part of diffusion impedance is correct. The applicability of our concept is confirmed by the prosperous validation results produced by computed tomography (CT) and battery dynamics simulation in finite-element environment. Due to the inherent limitations of the pseudo-2D Doyle-Fuller-Newman (DFN) model, our technique is accordingly valid within the current range of 0–1 C.

Suggested Citation

  • Bence Csomós & Dénes Fodor & István Vajda, 2020. "Estimation of Battery Separator Area, Cell Thickness and Diffusion Coefficient Based on Non-Ideal Liquid-Phase Diffusion Modeling," Energies, MDPI, vol. 13(23), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6238-:d:451838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rujian Fu & Xuan Zhou & Hengbin Fan & Douglas Blaisdell & Ajay Jagadale & Xi Zhang & Rui Xiong, 2017. "Comparison of Lithium-Ion Anode Materials Using an Experimentally Verified Physics-Based Electrochemical Model," Energies, MDPI, vol. 10(12), pages 1-20, December.
    2. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    3. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi & Matthew R. Herman & Jong-Won Lee, 2019. "Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    3. Vladimir Popov, 2009. "Why the West Became Rich before China and Why China Has Been Catching Up with the West since 1949: nother Explanation of the “Great Divergence” and “Great Convergence” Stories," Working Papers w0132, New Economic School (NES).
    4. George Pavlidis & Vassilios A. Tsihrintzis, 2018. "Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 1-29, January.
    5. Grzegorz W. Kolodko, 2009. "A Two-thirds Rate of Success: Polish Transformation and Economic Development, 1989-2008," WIDER Working Paper Series RP2009-14, World Institute for Development Economic Research (UNU-WIDER).
    6. Kudrin, A. & Gurvich, E., 2015. "Government Stimulus or Economic Incentives?," Journal of the New Economic Association, New Economic Association, vol. 26(2), pages 179-186.
    7. Larysa Tamilina & Natalya Tamilina, 2014. "Heterogeneity in Institutional Effects on Economic Growth: Theory and Empirical Evidence," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 11(2), pages 205-249, December.
    8. Popov, Vladimir, 2015. "Разрыв Между Югом И Западом По Уровню Экономического Развития Сокращается? [Catching up: Developing countries in pursuit of growth]," MPRA Paper 65893, University Library of Munich, Germany.
    9. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    10. Simachev, Yuri & Kuzyk, Mikhail & Ivanov, Denis, 2012. "Fostering innovation in Russian companies in the post-crisis period: Opportunities and constraints," MPRA Paper 41284, University Library of Munich, Germany.
    11. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    12. VADIM Ponkratov & В. Понкратов В., 2015. "Ресурсный Потенциал Нефтегазовой Отрасли Промышленности России И Стимулирование Повышения Эффективности Его Использования // Towards A More Efficient Use Of The Resource Potential Of The Russian Oil A," Экономика. Налоги. Право // Economics, taxes & law, ФГОБУ "Финансовый университет при Правительстве Российской Федерации" // Financial University under The Government of Russian Federation, issue 3, pages 94-101.
    13. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    14. repec:mje:mjejnl:v:12:y:2017:i:1:p:125-140 is not listed on IDEAS
    15. Polterovich, Victor & Popov, Vladimir & Tonis, Alexander, 2008. "Mechanisms of Resource Curse, Economic Policy and Growth," MPRA Paper 20570, University Library of Munich, Germany.
    16. Popov, Vladimir, 2014. "Can Uzbekistan Economy Retain Its High Growth Rates? Scenarios of Economic Development in 2015-30," MPRA Paper 59735, University Library of Munich, Germany, revised 20 Oct 2014.
    17. repec:ecb:ecbrbu:2018:0042:1 is not listed on IDEAS
    18. Okur, Osman & Alper, Erdogan & Almansoori, Ali, 2014. "Optimization of catalyst preparation conditions for direct sodium borohydride fuel cell using response surface methodology," Energy, Elsevier, vol. 67(C), pages 97-105.
    19. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    20. Adam S. Posen & Daniel Popov Gould, 2007. "Has EMU Had Any Impact on the Degree of Wage Restraint?," Palgrave Macmillan Books, in: David Cobham (ed.), The Travails of the Eurozone, chapter 7, pages 146-178, Palgrave Macmillan.
    21. Popov, V., 2011. "Do We Need to Protect Intellectual Property Rights?," Journal of the New Economic Association, New Economic Association, issue 11, pages 107-126.
    22. Ahmed Siddiky, Ishrak, 2011. "Towards a new framework for cross-border pipelines: The International Pipeline Agency (IPA)," Energy Policy, Elsevier, vol. 39(9), pages 5344-5346, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6238-:d:451838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.