IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5954-d445236.html
   My bibliography  Save this article

Toward Sustainable Energy-Independent Buildings Using Internet of Things

Author

Listed:
  • Naser Hossein Motlagh

    (Department of Computer Science, University of Helsinki, FI-00014 Helsinki, Finland)

  • Ali Khatibi

    (Department of Renewable Energy and Environment, University of Tehran, Tehran 14174-66191, Iran)

  • Alireza Aslani

    (Department of Renewable Energy and Environment, University of Tehran, Tehran 14174-66191, Iran)

Abstract

Buildings are one of the primary consumers of energy. In addition to the electricity grids, renewable energies can be used to supply the energy demand of buildings. Intelligent systems such as the Internet of Things (IoT) and wireless sensor technologies can also be applied to manage the energy consumption in buildings. Fortunately, integrating renewable energies with these intelligent systems enables creating nearly zero-energy buildings. In this paper, we present the results of our experimentation to demonstrate forming such a building and showing the benefits for building users and the society. We create a system by integrating photovoltaic (PV) technology with an IoT-based control mechanism to supply and consume energy. We further illustrate “how the integration of IoT and PV technology can bring added value to the users?”. To this end, we evaluate the performance of our system against conventional ways of energy supply and consumption for a lighting use case in a dairy store. We also investigate the environmental and economic impacts of our system. In our implementation, for the IoT-based control system, we have used a set of sensors, a server, and a wireless network to control the energy consumption. We developed a web application for user interaction and software-based settings. To control the lighting system, we developed an algorithm that utilizes the ambient light, users’ movements inside the store and a historical dataset. The historical dataset was collected from the users’ behaviour as a training set for the algorithm for turning on and off the lights. We also designed an electricity management system that computes the energy generation by the PV panels, controls the energy supply, and imports and exports electricity to the grid. The results show that our system is an efficient approach for creating energy-independent buildings by integrating renewable energies with IoT-based control systems. The results also show that our system not only responds to the internal demand by using domestic supply, but it also (i) offers economic benefit by exporting extra renewable electricity to the grid, and (ii) prevents producing huge amounts of CO 2 . Our system is one of the first works to achieve a nearly zero-energy building in the developing countries with low electricity accessibility.

Suggested Citation

  • Naser Hossein Motlagh & Ali Khatibi & Alireza Aslani, 2020. "Toward Sustainable Energy-Independent Buildings Using Internet of Things," Energies, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5954-:d:445236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, In & Lee, Kyoochun, 2015. "The Internet of Things (IoT): Applications, investments, and challenges for enterprises," Business Horizons, Elsevier, vol. 58(4), pages 431-440.
    2. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    3. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    4. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.
    5. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    6. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    7. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    8. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    9. Yehia Gad & Hatem Diab & Mahmoud Abdelsalam & Yasser Galal, 2020. "Smart Energy Management System of Environmentally Friendly Microgrid Based on Grasshopper Optimization Technique," Energies, MDPI, vol. 13(19), pages 1-22, September.
    10. Aslani, Alireza & Naaranoja, Marja & Zakeri, Bahnam, 2012. "The prime criteria for private sector participation in renewable energy investment in the Middle East (case study: Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1977-1987.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksander Jakimowicz, 2022. "The Energy Transition as a Super Wicked Problem: The Energy Sector in the Era of Prosumer Capitalism," Energies, MDPI, vol. 15(23), pages 1-31, December.
    2. Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    3. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    4. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    5. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    6. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    7. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    8. Soutullo, S. & Giancola, E. & Heras, M.R., 2018. "Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid," Energy, Elsevier, vol. 152(C), pages 1011-1023.
    9. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    10. Fernanda Moura Quintão Silva & Menaouar Berrehil El Kattel & Igor Amariz Pires & Thales Alexandre Carvalho Maia, 2022. "Development of a Supervisory System Using Open-Source for a Power Micro-Grid Composed of a Photovoltaic (PV) Plant Connected to a Battery Energy Storage System and Loads," Energies, MDPI, vol. 15(22), pages 1-22, November.
    11. Claudiu Vasile Kifor & Alexandru Olteanu & Mihai Zerbes, 2023. "Key Performance Indicators for Smart Energy Systems in Sustainable Universities," Energies, MDPI, vol. 16(3), pages 1-19, January.
    12. Victoria Galkovskaya & Mariia Volos, 2022. "Economic Efficiency of the Implementation of Digital Technologies in Energy Power," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    13. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    14. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    15. Pachouri, Vikrant & Singh, Rajesh & Gehlot, Anita & Pandey, Shweta & Vaseem Akram, Shaik & Abbas, Mohamed, 2024. "Empowering sustainability in the built environment: A technological Lens on industry 4.0 Enablers," Technology in Society, Elsevier, vol. 76(C).
    16. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    17. Luo, Na & Pritoni, Marco & Hong, Tianzhen, 2021. "An overview of data tools for representing and managing building information and performance data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    19. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5954-:d:445236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.