IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5565-d433973.html
   My bibliography  Save this article

Design and Performance Assessment of a Small-Scale Ferrite-PM Flux Reversal Wind Generator

Author

Listed:
  • Bharathi Manne

    (Electrical and Electronic Engineering, Koneru Lakshmaiah Educational Foundation, Guntur 522502, India)

  • Malligunta Kiran Kumar

    (Electrical and Electronic Engineering, Koneru Lakshmaiah Educational Foundation, Guntur 522502, India)

  • Udochukwu B. Akuru

    (Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
    Department of Electrical Engineering, University of Nigeria, Nsukka, Enugu State 410001, Nigeria)

Abstract

Currently, there is increasing research interest in harnessing wind energy for power generation by means of non-conventional electrical machines e.g., flux-reversal machines. The flux reversal machine is usually designed using scarce rare–earth permanent magnet material which may be unattractive in terms of machine cost. In this study, an attempt is made to re-design the flux reversal machine with non-rare-earth ferrite permanent magnet for wind energy applications. Because these machines possess high cogging torque, which results in vibration and noise, that are detrimental to the machine performance, especially at low speeds, a novel combined skewed and circumferential rotor pole pairing method is developed. The proposed cogging torque reduction method is implemented in 2-dimensional finite element analysis modeling and comparatively analyzed with other existing stand-alone methods viz., skewing, and rotor pole pairing. The results show that the proposed method led to 94.8% and 71% reduction in the cogging torque and torque ripple compared to the reference generator, respectively. However, the calculated torque density is reduced by 13%. Overall, the electromagnetic performance of the proposed ferrite PM machine exhibits desirable qualities as an alternative design for the direct drive wind generator.

Suggested Citation

  • Bharathi Manne & Malligunta Kiran Kumar & Udochukwu B. Akuru, 2020. "Design and Performance Assessment of a Small-Scale Ferrite-PM Flux Reversal Wind Generator," Energies, MDPI, vol. 13(21), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5565-:d:433973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5565/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Prakht & Mohamed N. Ibrahim & Vadim Kazakbaev, 2023. "Energy Efficiency Improvement of Electric Machines without Rare-Earth Magnets," Energies, MDPI, vol. 16(8), pages 1-3, April.
    2. Libing Jing & Kun Yang & Yuting Gao & Zhangtao Kui & Zeyu Min, 2022. "Analysis and Optimization of a Novel Flux Reversal Machine with Auxiliary Teeth," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Cherif Guerroudj & Yannis L. Karnavas & Jean-Frederic Charpentier & Ioannis D. Chasiotis & Lemnouer Bekhouche & Rachid Saou & Mohammed El-Hadi Zaïm, 2021. "Design Optimization of Outer Rotor Toothed Doubly Salient Permanent Magnet Generator Using Symbiotic Organisms Search Algorithm," Energies, MDPI, vol. 14(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5565-:d:433973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.