IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5348-d427788.html
   My bibliography  Save this article

An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime

Author

Listed:
  • Lissy Langer

    (Working Group Production and Operations Management (POM), Technische Universität Berlin, Office ID H 85, Straße des 17. Juni 135, 10623 Berlin, Germany)

Abstract

The European Commission calls for more small-scale renewable energy producers to actively participate in the energy value chain. In this study, we model an illustrative peer-to-peer (P2P) market with tariffs based on the reservation prices of market participants under the German levy regime. The study is conducted by modeling representative residential buildings with home energy management systems, modulating heat pumps, and photovoltaics, in combination with electrical and thermal storage systems. The resulting mixed-integer linear program is solved over the course of a year, using a rolling horizon approach with a time resolution of one hour. By analyzing the cost- and discomfort-minimizing behavior of the market participants, we evaluate the current levy regime and propose two additional designs. We find that in the current case, a P2P market is not economically viable. Based on feed-in tariffs (FiT) and levies no agreeable market price can be found. With no FiT or reduced levies, all participants benefit from the P2P market. The market split—where each household sources their energy from—is altered only little by the specific details of the market design when staying in the agreeable price range. As prosumagers do not consume on the P2P market, they benefit only marginally from the reduced levies—consumers are most affected. Adjusting the regime could be a measure to rebalance the distribution of renewable energy benefits towards consumers in order to foster social cohesion. Our input data and the model written in the Julia JuMP programming language are available in an open-source format.

Suggested Citation

  • Lissy Langer, 2020. "An Optimal Peer-to-Peer Market Considering Modulating Heat Pumps and Photovoltaic Systems under the German Levy Regime," Energies, MDPI, vol. 13(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5348-:d:427788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    2. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    3. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    4. Nguyen, Su & Peng, Wei & Sokolowski, Peter & Alahakoon, Damminda & Yu, Xinghuo, 2018. "Optimizing rooftop photovoltaic distributed generation with battery storage for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 228(C), pages 2567-2580.
    5. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    6. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    7. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    8. Hui Huang & Shilin Nie & Jin Lin & Yuanyuan Wang & Jun Dong, 2020. "Optimization of Peer-to-Peer Power Trading in a Microgrid with Distributed PV and Battery Energy Storage Systems," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    9. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    10. El-Baz, Wessam & Tzscheutschler, Peter & Wagner, Ulrich, 2019. "Integration of energy markets in microgrids: A double-sided auction with device-oriented bidding strategies," Applied Energy, Elsevier, vol. 241(C), pages 625-639.
    11. Jordi de la Hoz & Àlex Alonso & Sergio Coronas & Helena Martín & José Matas, 2020. "Impact of Different Regulatory Structures on the Management of Energy Communities," Energies, MDPI, vol. 13(11), pages 1-26, June.
    12. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    13. Alexandra Lüth & Jens Weibezahn & Jan Martin Zepter, 2020. "On Distributional Effects in Local Electricity Market Designs—Evidence from a German Case Study," Energies, MDPI, vol. 13(8), pages 1-26, April.
    14. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    15. An, Jongbaek & Lee, Minhyun & Yeom, Seungkeun & Hong, Taehoon, 2020. "Determining the Peer-to-Peer electricity trading price and strategy for energy prosumers and consumers within a microgrid," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver Wagner & Kurt Berlo & Christian Herr & Michael Companie, 2021. "Success Factors for the Foundation of Municipal Utilities in Germany," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    3. Zhengjie You & Michel Zade & Babu Kumaran Nalini & Peter Tzscheutschler, 2021. "Flexibility Estimation of Residential Heat Pumps under Heat Demand Uncertainty," Energies, MDPI, vol. 14(18), pages 1-19, September.
    4. Millar, Michael-Allan & Yu, Zhibin & Burnside, Neil & Jones, Greg & Elrick, Bruce, 2021. "Identification of key performance indicators and complimentary load profiles for 5th generation district energy networks," Applied Energy, Elsevier, vol. 291(C).
    5. Daishi Sagawa & Kenji Tanaka & Fumiaki Ishida & Hideya Saito & Naoya Takenaga & Kosuke Saegusa, 2023. "P2P Electricity Trading Considering User Preferences for Renewable Energy and Demand-Side Shifts," Energies, MDPI, vol. 16(8), pages 1-25, April.
    6. Schmitt, Carlo & Schumann, Klemens & Kollenda, Katharina & Blank, Andreas & Rebenaque, Olivier & Dronne, Théo & Martin, Arnault & Vassilopoulos, Philippe & Roques, Fabien & Moser, Albert, 2022. "How will local energy markets influence the pan-European day-ahead market and transmission systems? A case study for local markets in France and Germany," Applied Energy, Elsevier, vol. 325(C).
    7. Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
    8. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    9. Gudmundsson, Oddgeir & Schmidt, Ralf-Roman & Dyrelund, Anders & Thorsen, Jan Eric, 2022. "Economic comparison of 4GDH and 5GDH systems – Using a case study," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    4. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    5. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    6. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Bidan Zhang & Yang Du & Xiaoyang Chen & Eng Gee Lim & Lin Jiang & Ke Yan, 2022. "Potential Benefits for Residential Building with Photovoltaic Battery System Participation in Peer-to-Peer Energy Trading," Energies, MDPI, vol. 15(11), pages 1-21, May.
    8. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    9. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    10. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    11. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    12. Arnob Das & Susmita Datta Peu & Md. Abdul Mannan Akanda & Abu Reza Md. Towfiqul Islam, 2023. "Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis of Energy and Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Energy Sector," Energies, MDPI, vol. 16(5), pages 1-27, February.
    13. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    14. Dong, Jingya & Song, Chunhe & Liu, Shuo & Yin, Huanhuan & Zheng, Hao & Li, Yuanjian, 2022. "Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach," Applied Energy, Elsevier, vol. 325(C).
    15. Olivier Rebenaque & Carlo Schmitt & Klemens Schumann, 2022. "Trading in local markets: A review of concepts and challenges," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 25-47.
    16. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    17. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    18. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    19. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5348-:d:427788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.