IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5318-d427084.html
   My bibliography  Save this article

Performance Evaluation of Energy Research Projects Using DEA Super-Efficiency

Author

Listed:
  • Sungsig Bang

    (Department of Management Science, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea)

Abstract

This study proposes super efficiency (SE) as an efficient analytical method for evaluating the performance of energy research projects. Because the SE method is based on data envelopment analysis (DEA), it is free from the difficulty of weighting output, allows for the use of variables with diverse standards of measurement, and is capable of providing ranking information that regular DEA (CCR, BCC) analysis techniques cannot. To analyze the feasibility of the DEA-SE method, an efficiency evaluation was performed for energy research projects using both the weighting method as an existing method and the SE method. When the results were compared and analyzed, skewing toward particular output types was observed in the weighting method, owing to problems inherent in the method itself and in the weighting of subordinate variables that make up the total performance score. Therefore, adopting DEA-SE will redress the known problems of the weighting method by minimizing the problems of weighting and skewing in outputs, enabling use of the input and output variables with diverse units and standards of measurement, and providing ranking information of research performance evaluation that is unobtainable with the existing DEA method.

Suggested Citation

  • Sungsig Bang, 2020. "Performance Evaluation of Energy Research Projects Using DEA Super-Efficiency," Energies, MDPI, vol. 13(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5318-:d:427084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Yanbin Li & Shuangshuang Shao & Feng Zhang, 2018. "An Analysis of the Multi-Criteria Decision-Making Problem for Distributed Energy Systems," Energies, MDPI, vol. 11(9), pages 1-12, September.
    4. Joe Zhu, 2014. "Quantitative Models for Performance Evaluation and Benchmarking," International Series in Operations Research and Management Science, Springer, edition 3, number 978-3-319-06647-9, April.
    5. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Azeem Khan, 2020. "Energy Efficiency Outlook of New Zealand Dairy Farming Systems: An Application of Data Envelopment Analysis (DEA) Approach," Energies, MDPI, vol. 13(1), pages 1-14, January.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    8. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    9. Mukherjee, Kankana, 2008. "Energy use efficiency in the Indian manufacturing sector: An interstate analysis," Energy Policy, Elsevier, vol. 36(2), pages 662-672, February.
    10. Ewa Chodakowska & Joanicjusz Nazarko, 2020. "Assessing the Performance of Sustainable Development Goals of EU Countries: Hard and Soft Data Integration," Energies, MDPI, vol. 13(13), pages 1-26, July.
    11. C A K Lovell & A P B Rouse, 2003. "Equivalent standard DEA models to provide super-efficiency scores," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 101-108, January.
    12. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    13. Zhu, Joe, 1996. "Robustness of the efficient DMUs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 90(3), pages 451-460, May.
    14. Chen, Yao, 2005. "Measuring super-efficiency in DEA in the presence of infeasibility," European Journal of Operational Research, Elsevier, vol. 161(2), pages 545-551, March.
    15. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    16. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    17. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    18. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Chen & Yongjun Li & Liang Liang & Huaqing Wu, 2019. "An extension on super slacks-based measure DEA approach," Annals of Operations Research, Springer, vol. 278(1), pages 101-121, July.
    2. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    3. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    4. Ying Li & Yung-ho Chiu & Liang Chun Lu, 2019. "New Energy Development and Pollution Emissions in China," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
    5. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    6. Lee, Hsuan-Shih & Zhu, Joe, 2012. "Super-efficiency infeasibility and zero data in DEA," European Journal of Operational Research, Elsevier, vol. 216(2), pages 429-433.
    7. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    8. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    9. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    10. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    11. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    12. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A proxy approach to dealing with the infeasibility problem in super-efficiency data envelopment analysis," MPRA Paper 42064, University Library of Munich, Germany.
    13. Cheng, Gang & Qian, Zhenhua & Zervopoulos, Panagiotis, 2011. "Overcoming the infeasibility of super-efficiency DEA model: a model with generalized orientation," MPRA Paper 31991, University Library of Munich, Germany.
    14. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    15. Baldin, Andrea, 2017. "A DEA approach for selecting a bundle of tickets for performing arts events," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 190-200.
    16. W D Cook & L Liang & Y Zha & J Zhu, 2009. "A modified super-efficiency DEA model for infeasibility," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 276-281, February.
    17. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    18. Constantino J. Garcia Martin & Amparo Medal-Bartual & Marta Peris-Ortiz, 2014. "Analysis of efficiency and profitability of franchise services," The Service Industries Journal, Taylor & Francis Journals, vol. 34(9-10), pages 796-810, July.
    19. Saranga, Haritha, 2009. "The Indian auto component industry - Estimation of operational efficiency and its determinants using DEA," European Journal of Operational Research, Elsevier, vol. 196(2), pages 707-718, July.
    20. Nomita Pachar & Jyoti Dhingra Darbari & Kannan Govindan & P. C. Jha, 2022. "Sustainable performance measurement of Indian retail chain using two-stage network DEA," Annals of Operations Research, Springer, vol. 315(2), pages 1477-1515, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5318-:d:427084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.