IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5289-d426533.html
   My bibliography  Save this article

Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design

Author

Listed:
  • Mateusz Płoszaj-Mazurek

    (Faculty of Architecture, Warsaw University of Technology (WUT), 00661 Warszawa, Poland)

  • Elżbieta Ryńska

    (Faculty of Architecture, Warsaw University of Technology (WUT), 00661 Warszawa, Poland)

  • Magdalena Grochulska-Salak

    (Faculty of Architecture, Warsaw University of Technology (WUT), 00661 Warszawa, Poland)

Abstract

The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.

Suggested Citation

  • Mateusz Płoszaj-Mazurek & Elżbieta Ryńska & Magdalena Grochulska-Salak, 2020. "Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design," Energies, MDPI, vol. 13(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5289-:d:426533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5289/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naboni, Emanuele & Natanian, Jonathan & Brizzi, Giambattista & Florio, Pietro & Chokhachian, Ata & Galanos, Theodoros & Rastogi, Parag, 2019. "A digital workflow to quantify regenerative urban design in the context of a changing climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Pedro Nuñez-Cacho & Jaroslaw Górecki & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias, 2018. "What Gets Measured, Gets Done: Development of a Circular Economy Measurement Scale for Building Industry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    3. Elzbieta Rynska & Joanna Klimowicz & Slawomir Kowal & Krzysztof Lyzwa & Michal Pierzchalski & Wojciech Rekosz, 2020. "Smart Energy Solutions as an Indispensable Multi-Criteria Input for a Coherent Urban Planning and Building Design Process—Two Case Studies for Smart Office Buildings in Warsaw Downtown Area," Energies, MDPI, vol. 13(15), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauhan, Chetna & Parida, Vinit & Dhir, Amandeep, 2022. "Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Ewelina Gawell & Konrad Grabowiecki, 2021. "Modern Details in Meaningful Architecture," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    3. Mattia Manni & Franco Cotana, 2022. "Life Cycle Thinking a Sustainable Built Environment," Energies, MDPI, vol. 15(10), pages 1-2, May.
    4. Aisikaer Molake & Rui Zhang & Yihuan Zhou, 2023. "Multi-Objective Optimization of Daylight Performance and Thermal Comfort of Enclosed-Courtyard Rural Residence in a Cold Climate Zone, China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    5. Rui Liang & Xichuan Zheng & Po-Hsun Wang & Jia Liang & Linhui Hu, 2023. "Research Progress of Carbon-Neutral Design for Buildings," Energies, MDPI, vol. 16(16), pages 1-50, August.
    6. Sultan Çetin & Catherine De Wolf & Nancy Bocken, 2021. "Circular Digital Built Environment: An Emerging Framework," Sustainability, MDPI, vol. 13(11), pages 1-34, June.
    7. Michał Pierzchalski & Elżbieta Dagny Ryńska & Arkadiusz Węglarz, 2021. "Life Cycle Assessment as a Major Support Tool within Multi-Criteria Design Process of Single Dwellings Located in Poland," Energies, MDPI, vol. 14(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daozhi Zhao & Jiaqin Hao & Cejun Cao & Hongshuai Han, 2019. "Evolutionary Game Analysis of Three-Player for Low-Carbon Production Capacity Sharing," Sustainability, MDPI, vol. 11(11), pages 1-20, May.
    2. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    3. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    4. Francesco De Luca, 2023. "Advances in Climatic Form Finding in Architecture and Urban Design," Energies, MDPI, vol. 16(9), pages 1-18, May.
    5. Ali Hainoun & Hans-Martin Neumann & Naomi Morishita-Steffen & Baptiste Mougeot & Étienne Vignali & Florian Mandel & Felix Hörmann & Sebastian Stortecky & Katharina Walter & Martin Kaltenhauser-Barth &, 2022. "Smarter Together: Monitoring and Evaluation of Integrated Building Solutions for Low-Energy Districts of Lighthouse Cities Lyon, Munich, and Vienna," Energies, MDPI, vol. 15(19), pages 1-26, September.
    6. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Pedro Núñez-Cacho & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina & Rody Van der Gun, 2020. "Plastics and sustainable purchase decisions in a circular economy: The case of Dutch food industry," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    8. Elena Aurelia Botezat & Anca Otilia Dodescu & Sebastian Văduva & Silvia Liana Fotea, 2018. "An Exploration of Circular Economy Practices and Performance Among Romanian Producers," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    9. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    10. Anosh Nadeem Butt & Branka Dimitrijević, 2022. "Multidisciplinary and Transdisciplinary Collaboration in Nature-Based Design of Sustainable Architecture and Urbanism," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    11. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    12. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.
    13. Leonora Charlotte Malabi Eberhardt & Anne van Stijn & Freja Nygaard Rasmussen & Morten Birkved & Harpa Birgisdottir, 2020. "Development of a Life Cycle Assessment Allocation Approach for Circular Economy in the Built Environment," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    14. Min Lu & Xing Wang & Yuquan Cang, 2018. "Carbon Productivity: Findings from Industry Case Studies in Beijing," Energies, MDPI, vol. 11(10), pages 1-19, October.
    15. José Luis Ruiz-Real & Juan Uribe-Toril & Jaime De Pablo Valenciano & Juan Carlos Gázquez-Abad, 2018. "Worldwide Research on Circular Economy and Environment: A Bibliometric Analysis," IJERPH, MDPI, vol. 15(12), pages 1-14, November.
    16. Juan Cristóbal Hernández-Arzaba & Sarfraz Nazir & Sandra Nelly Leyva-Hernández & Sanar Muhyaddin, 2022. "Stakeholder Pressure Engaged with Circular Economy Principles and Economic and Environmental Performance," Sustainability, MDPI, vol. 14(23), pages 1-20, December.
    17. Marvuglia, Antonino & Havinga, Lisanne & Heidrich, Oliver & Fonseca, Jimeno & Gaitani, Niki & Reckien, Diana, 2020. "Advances and challenges in assessing urban sustainability: an advanced bibliometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    18. Valentín Molina-Moreno & Pedro Núñez-Cacho Utrilla & Francisco J. Cortés-García & Antonio Peña-García, 2018. "The Use of Led Technology and Biomass to Power Public Lighting in a Local Context: The Case of Baeza (Spain)," Energies, MDPI, vol. 11(7), pages 1-12, July.
    19. Elena Lucchi, 2023. "Regenerative Design of Archaeological Sites: A Pedagogical Approach to Boost Environmental Sustainability and Social Engagement," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    20. Alejandro M. Martín-Gómez & María Pineda-Ganfornina & María Jesús Ávila-Gutiérrez & Alejandro Agote-Garrido & Juan Ramón Lama-Ruiz, 2024. "Balanced Scorecard for Circular Economy: A Methodology for Sustainable Organizational Transformation," Sustainability, MDPI, vol. 16(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5289-:d:426533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.