IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p220-d304611.html
   My bibliography  Save this article

Fault Analysis and Design of a Protection System for a Mesh Power System with a Co-Axial HTS Power Cable

Author

Listed:
  • Thai-Thanh Nguyen

    (Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Woon-Gyu Lee

    (Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Hak-Man Kim

    (Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea)

  • Hyung Suk Yang

    (KEPCO Research Institute, Daejeon 34056, Korea)

Abstract

The uses of high-temperature superconducting (HTS) cables pose a challenge of power system protection since the impedance of the HTS cable is varied during fault conditions. The protection systems should be designed properly to ensure the reliability and stability of the whole system. This paper presents a fault analysis of the co-axial HTS cable in the mesh system and proposes a coordinated protection system. In the proposed protection system, the main protection is the differential current relay whereas the backup protections are the overcurrent and directional overcurrent relays. The normal and abnormal relay operations are considered to analyze the transient fault current in the HTS cable and evaluate the performance of the proposed coordinated protection system. Characteristics of cable impedances and temperatures under various fault conditions are presented. The proposed protection scheme is validated by the simulation in the PSCAD/EMTDC program. Simulation results show that the coordinated protection scheme could successfully protect the HTS cables in both normal and abnormal relay operations.

Suggested Citation

  • Thai-Thanh Nguyen & Woon-Gyu Lee & Hak-Man Kim & Hyung Suk Yang, 2020. "Fault Analysis and Design of a Protection System for a Mesh Power System with a Co-Axial HTS Power Cable," Energies, MDPI, vol. 13(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:220-:d:304611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seok-Ju Lee & Hae-Jin Sung & Minwon Park & DuYean Won & Jaeun Yoo & Hyung Suk Yang, 2019. "Analysis of the Temperature Characteristics of Three-Phase Coaxial Superconducting Power Cable according to a Liquid Nitrogen Circulation Method for Real-Grid Application in Korea," Energies, MDPI, vol. 12(9), pages 1-11, May.
    2. Thai-Thanh Nguyen & Woon-Gyu Lee & Seok-Ju Lee & Minwon Park & Hak-Man Kim & DuYean Won & Jaeun Yoo & Hyung Suk Yang, 2019. "A Simplified Model of Coaxial, Multilayer High-Temperature Superconducting Power Cables with Cu Formers for Transient Studies," Energies, MDPI, vol. 12(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hun-Chul Seo, 2020. "New Protection Scheme in Loop Distribution System with Distributed Generation," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Sisi Peng & Chuanbing Cai & Jiaqi Cai & Jun Zheng & Difan Zhou, 2022. "Optimum Design and Performance Analysis of Superconducting Cable with Different Conductor Layout," Energies, MDPI, vol. 15(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sisi Peng & Chuanbing Cai & Jiaqi Cai & Jun Zheng & Difan Zhou, 2022. "Optimum Design and Performance Analysis of Superconducting Cable with Different Conductor Layout," Energies, MDPI, vol. 15(23), pages 1-14, November.
    2. Youngjun Choi & Dongmin Kim & Changhyung Lee & Duyeon Won & Jaeun Yoo & Hyungsuk Yang & Seokho Kim, 2020. "Thermo-Hydraulic Analysis of a Tri-Axial High-Temperature Superconducting Power Cable with Respect to Installation Site Geography," Energies, MDPI, vol. 13(15), pages 1-17, July.
    3. Seok-Ju Lee & Seong Yeol Kang & Minwon Park & DuYean Won & Jaeun Yoo & Hyung Suk Yang, 2020. "Performance Analysis of Real-Scale 23 kV/60 MVA Class Tri-Axial HTS Power Cable for Real-Grid Application in Korea," Energies, MDPI, vol. 13(8), pages 1-13, April.
    4. Thai-Thanh Nguyen & Hak-Man Kim & Hyung Suk Yang, 2020. "Impacts of a LVRT Control Strategy of Offshore Wind Farms on the HTS Power Cable," Energies, MDPI, vol. 13(5), pages 1-17, March.
    5. Eleni Tsotsopoulou & Adam Dyśko & Qiteng Hong & Abdelrahman Elwakeel & Mariam Elshiekh & Weijia Yuan & Campbell Booth & Dimitrios Tzelepis, 2020. "Modelling and Fault Current Characterization of Superconducting Cable with High Temperature Superconducting Windings and Copper Stabilizer Layer," Energies, MDPI, vol. 13(24), pages 1-24, December.
    6. Lan Xiong & Yonghui Chen & Yang Jiao & Jie Wang & Xiao Hu, 2019. "Study on the Effect of Cable Group Laying Mode on Temperature Field Distribution and Cable Ampacity," Energies, MDPI, vol. 12(17), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:220-:d:304611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.