IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5148-d423125.html
   My bibliography  Save this article

Smart Grid State Estimation with PMUs Time Synchronization Errors

Author

Listed:
  • Marco Todescato

    (Bosch Center for Artificial Intelligence, 71272 Renningen, Germany)

  • Ruggero Carli

    (Department of Information Engineering, University of Padova, via Gradenigo 6/b, 35131 Padova, Italy)

  • Luca Schenato

    (Department of Information Engineering, University of Padova, via Gradenigo 6/b, 35131 Padova, Italy)

  • Grazia Barchi

    (Institute for Renewable Energy, Eurac Research, viale Druso 1, 39100 Bolzano, Italy)

Abstract

State Estimation (SE) is one of the essential tasks to monitor and control the smart power grid. This paper presents a method to estimate the state variables combining the measurement of power demand at each bus with the data collected from a limited number of Phasor Measurement Units (PMUs). Although PMU data are usually assumed to be perfectly synchronized with the Coordinated Universal Time (UTC), this work explicitly considers the presence of time-synchronization errors due, for instance, to the actual performance of GPS receivers and the limited stability of the internal oscillator. The proposed algorithm is a recursive Kalman filter which not only estimates the state variables of the power system, but also the frequency deviations causing clock offsets which eventually affect the timestamps of the measures returned by different PMUs. The proposed solution was tested and compared with alternative approaches using both synthetic data applied to the IEEE 123 bus distribution feeder and real-field data collected from a small-size medium-voltage (MV) distribution system located inside the EPFL campus in Lausanne. Results show the validity of the proposed method in terms of state estimation accuracy. In particular, when some synchronization errors are present, the proposed algorithm can estimate and compensate for them.

Suggested Citation

  • Marco Todescato & Ruggero Carli & Luca Schenato & Grazia Barchi, 2020. "Smart Grid State Estimation with PMUs Time Synchronization Errors," Energies, MDPI, vol. 13(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5148-:d:423125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shepard, Daniel P. & Humphreys, Todd E. & Fansler, Aaron A., 2012. "Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 5(3), pages 146-153.
    2. Basanta Raj Pokhrel & Birgitte Bak-Jensen & Jayakrishnan R. Pillai, 2019. "Integrated Approach for Network Observability and State Estimation in Active Distribution Grid," Energies, MDPI, vol. 12(12), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Evangelos E. Pompodakis & Arif Ahmed & Minas C. Alexiadis, 2022. "A Sensitivity-Based Three-Phase Weather-Dependent Power Flow Algorithm for Networks with Local Voltage Controllers," Energies, MDPI, vol. 15(6), pages 1-26, March.
    3. David Macii & Daniele Fontanelli & Grazia Barchi, 2020. "A Distribution System State Estimator Based on an Extended Kalman Filter Enhanced with a Prior Evaluation of Power Injections at Unmonitored Buses," Energies, MDPI, vol. 13(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    2. Giani, Annarita & Bent, Russell & Pan, Feng, 2014. "Phasor measurement unit selection for unobservable electric power data integrity attack detection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(3), pages 155-164.
    3. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    4. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Enrico Telaretti & Nicola Panzavecchia & Giovanni Tinè, 2019. "Incremental Heuristic Approach for Meter Placement in Radial Distribution Systems," Energies, MDPI, vol. 12(20), pages 1-17, October.
    5. David Macii & Daniele Fontanelli & Grazia Barchi, 2020. "A Distribution System State Estimator Based on an Extended Kalman Filter Enhanced with a Prior Evaluation of Power Injections at Unmonitored Buses," Energies, MDPI, vol. 13(22), pages 1-25, November.
    6. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    7. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.
    8. Chinmayee Biswal & Binod Kumar Sahu & Manohar Mishra & Pravat Kumar Rout, 2023. "Real-Time Grid Monitoring and Protection: A Comprehensive Survey on the Advantages of Phasor Measurement Units," Energies, MDPI, vol. 16(10), pages 1-34, May.
    9. Reda, Haftu Tasew & Anwar, Adnan & Mahmood, Abdun, 2022. "Comprehensive survey and taxonomies of false data injection attacks in smart grids: attack models, targets, and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5148-:d:423125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.