IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4863-d414913.html
   My bibliography  Save this article

Simulation, Analysis, and Characterization of Calcium-Doped ZnO Nanostructures for Dye-Sensitized Solar Cells

Author

Listed:
  • Shahzadi Tayyaba

    (Department of Computer Engineering, The University of Lahore, Lahore 54000, Pakistan)

  • Muhammad Waseem Ashraf

    (Department of Physics (Electronics), GC University Lahore, Lahore 54000, Pakistan)

  • Muhammad Imran Tariq

    (Department of Computer Science, The Superior University Lahore, Lahore 54000, Pakistan)

  • Maham Akhlaq

    (Department of Physics (Electronics), GC University Lahore, Lahore 54000, Pakistan)

  • Valentina Emilia Balas

    (Automatics and Applied Software Department, “Aurel Vlaicu” University of Arad, 310130 Arad, Romania)

  • Ning Wang

    (Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100069, China)

  • Marius M. Balas

    (Automatics and Applied Software Department, “Aurel Vlaicu” University of Arad, 310130 Arad, Romania)

Abstract

In this research article, the authors have discussed the simulation, analysis, and characterization of calcium-doped zinc oxide (Ca-doped-ZnO) nanostructures for advanced generation solar cells. A comparative study has been performed to envisage the effect of Ca-doped ZnO nanoparticles (NP), seeded Ca-doped ZnO nanorods (NR), and unseeded Ca-doped ZnO NR as photoanodes in dye-sensitized solar cells. Simulations were performed in MATLAB fuzzy logic controller to study the effect of various structures on the overall solar cell efficiency. The simulation results show an error of less than 1% in between the simulated and calculated values. This work shows that the diameter of the seeded Ca-doped ZnO NR is greater than that of the unseeded Ca-doped ZnO NR. The incorporation of Ca in the ZnO nanostructure is confirmed using XRD graphs and an EDX spectrum. The optical band gap of the seeded substrate is 3.18 eV, which is higher compared to those of unseeded Ca-doped ZnO NR and Ca-doped ZnO NP, which are 3.16 eV and 3.13 ev, respectively. The increase in optical band gap results in the improvement of the overall solar cell efficiency of the seeded Ca-doped ZnO NR to 1.55%. The incorporation of a seed layer with Ca-doped ZnO NR increases the fill factor and the overall efficiency of dye-sensitized solar cells (DSSC).

Suggested Citation

  • Shahzadi Tayyaba & Muhammad Waseem Ashraf & Muhammad Imran Tariq & Maham Akhlaq & Valentina Emilia Balas & Ning Wang & Marius M. Balas, 2020. "Simulation, Analysis, and Characterization of Calcium-Doped ZnO Nanostructures for Dye-Sensitized Solar Cells," Energies, MDPI, vol. 13(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4863-:d:414913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.
    2. Das, Narottam & Wongsodihardjo, Hendy & Islam, Syed, 2015. "Modeling of multi-junction photovoltaic cell using MATLAB/Simulink to improve the conversion efficiency," Renewable Energy, Elsevier, vol. 74(C), pages 917-924.
    3. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    2. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    3. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    4. Andrés Tobón & Julián Peláez-Restrepo & Juan P. Villegas-Ceballos & Sergio Ignacio Serna-Garcés & Jorge Herrera & Asier Ibeas, 2017. "Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods," Energies, MDPI, vol. 10(9), pages 1-15, September.
    5. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    6. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    7. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    8. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    9. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    10. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    11. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    14. Petru Adrian Cotfas & Daniel Tudor Cotfas & Paul Nicolae Borza & Dezso Sera & Remus Teodorescu, 2018. "Solar Cell Capacitance Determination Based on an RLC Resonant Circuit," Energies, MDPI, vol. 11(3), pages 1-13, March.
    15. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    16. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    17. Camdali, Unal & Bulut, Murat & Sozbir, Nedim, 2015. "Numerical modeling of a ground source heat pump: The Bolu case," Renewable Energy, Elsevier, vol. 83(C), pages 352-361.
    18. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
    20. Jafarzadeh, Mohammad & Sipaut, Coswald Stephen & Dayou, Jedol & Mansa, Rachel Fran, 2016. "Recent progresses in solar cells: Insight into hollow micro/nano–structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 543-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4863-:d:414913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.