IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4850-d414554.html
   My bibliography  Save this article

Development of Optimal Design Method for Ground-Source Heat-Pump System Using Particle Swarm Optimization

Author

Listed:
  • Hyeongjin Moon

    (Department of Architectural Engineering, Pusan National University, Pusan 612-022, Korea)

  • Jae-Young Jeon

    (Department of Architectural Engineering, Pusan National University, Pusan 612-022, Korea)

  • Yujin Nam

    (Department of Architectural Engineering, Pusan National University, Pusan 612-022, Korea)

Abstract

The building sector is an energy-consuming sector, and the development of zero-energy buildings (ZEBs) is necessary to address this. A ZEB’s active components include a system that utilizes renewable energy. There is a heat-pump system using geothermal energy. The system is available regardless of weather conditions and time, and it has attracted attention as a high-performance energy system due to its stability and efficiency. However, initial investment costs are higher than other renewable energy sources. To solve this problem, design optimization for the capacity of geothermal heat-pump systems should be performed. In this study, a capacity optimization design of a geothermal heat-pump system was carried out according to building load pattern, and emphasis was placed on cost aspects. Building load patterns were modeled into hospitals, schools, and apartments, and, as a result of optimization, the total cost over 20 years in all building load patterns was reduced.

Suggested Citation

  • Hyeongjin Moon & Jae-Young Jeon & Yujin Nam, 2020. "Development of Optimal Design Method for Ground-Source Heat-Pump System Using Particle Swarm Optimization," Energies, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4850-:d:414554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    2. Binghui Si & Zhichao Tian & Wenqiang Chen & Xing Jin & Xin Zhou & Xing Shi, 2018. "Performance Assessment of Algorithms for Building Energy Optimization Problems with Different Properties," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    3. Hyeongjin Moon & Hongkyo Kim & Yujin Nam, 2019. "Study on the Optimum Design of a Ground Heat Pump System Using Optimization Algorithms," Energies, MDPI, vol. 12(21), pages 1-17, October.
    4. Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Hongkyo Kim & Yujin Nam & Sangmu Bae & Jae Sang Choi & Sang Bum Kim, 2020. "A Study on the Effect of Performance Factor on GSHP System through Real-Scale Experiments in Korea," Energies, MDPI, vol. 13(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeongjin Moon & Hongkyo Kim & Yujin Nam, 2019. "Study on the Optimum Design of a Ground Heat Pump System Using Optimization Algorithms," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    3. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    4. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    5. Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
    6. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    7. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    8. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    9. Kwonye Kim & Sangmu Bae & Yujin Nam & Euyjoon Lee & Evgueniy Entchev, 2022. "Development of a Low-Depth Modular GHX through a Real-Scale Experiment," Energies, MDPI, vol. 15(3), pages 1-14, January.
    10. Kwonye Kim & Jaemin Kim & Yujin Nam & Euyjoon Lee & Eunchul Kang & Evgueniy Entchev, 2021. "Analysis of Heat Exchange Rate for Low-Depth Modular Ground Heat Exchanger through Real-Scale Experiment," Energies, MDPI, vol. 14(7), pages 1-13, March.
    11. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    12. Farzanehkhameneh, Pooya & Soltani, M. & Moradi Kashkooli, Farshad & Ziabasharhagh, Masoud, 2020. "Optimization and energy-economic assessment of a geothermal heat pump system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Youngsik Kwon & Sangmu Bae & Yujin Nam, 2022. "Development of Design Method for River Water Source Heat Pump System Using an Optimization Algorithm," Energies, MDPI, vol. 15(11), pages 1-19, May.
    14. Hou, Dan & Huang, Jiayu & Wang, Yanyu, 2023. "A comparison of approaches with different constraint handling techniques for energy-efficient building form optimization," Energy, Elsevier, vol. 277(C).
    15. Oliver Suft & David Bertermann, 2022. "One-Year Monitoring of a Ground Heat Exchanger Using the In Situ Thermal Response Test: An Experimental Approach on Climatic Effects," Energies, MDPI, vol. 15(24), pages 1-15, December.
    16. Hongkyo Kim & Yujin Nam & Sangmu Bae & Jae Sang Choi & Sang Bum Kim, 2020. "A Study on the Effect of Performance Factor on GSHP System through Real-Scale Experiments in Korea," Energies, MDPI, vol. 13(3), pages 1-18, January.
    17. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    18. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    19. Tangnur Amanzholov & Abzal Seitov & Abdurashid Aliuly & Yelnar Yerdesh & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Yerzhan Belyayev & Amankeldy Toleukhanov, 2022. "Thermal Response Measurement and Performance Evaluation of Borehole Heat Exchangers: A Case Study in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-31, November.
    20. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4850-:d:414554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.