IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4724-d411881.html
   My bibliography  Save this article

Faulty Feeder Detection Method Based on VMD–FFT and Pearson Correlation Coefficient of Non-Power Frequency Component in Resonant Grounded Systems

Author

Listed:
  • Kewen Wei

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Jing Zhang

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Yu He

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Gang Yao

    (Guizhou Power Grid Company, Guiyang 550001, China)

  • Yikun Zhang

    (College of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract

Through analyzing the transient components and transient characteristics in transient zero-sequence current (TZSC), a novel fault feeder detection method based on the transient correlation of non-power frequency components (NPFCs) for the resonant grounded system is proposed. Firstly, using variational mode decomposition combined with fast Fourier transformation (VMD–FFT) to decompose the TZSC, by removing the power frequency components and noise signals, the transient NPFCs can be obtained. Secondly, to reflect the overall changing trend between faulty and healthy currents, the moving average filter is introduced to smooth the NPFCs; in this way, the fault transient features can be accurately revealed. Finally, the faulty feeder can be detected by comparing the threshold with the maximum difference value of comprehensive correlation coefficient of NPFCs. The detection results show that the proposed fault detection method can accurately select the faulty feeder; it is unaffected by fault resistances, fault phase angles, etc. Moreover, the detection method can resist noise interference.

Suggested Citation

  • Kewen Wei & Jing Zhang & Yu He & Gang Yao & Yikun Zhang, 2020. "Faulty Feeder Detection Method Based on VMD–FFT and Pearson Correlation Coefficient of Non-Power Frequency Component in Resonant Grounded Systems," Energies, MDPI, vol. 13(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4724-:d:411881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenquan Shao & Jie Bai & Yuan Cheng & Zhihua Zhang & Ning Li, 2019. "Research on a Faulty Line Selection Method Based on the Zero-Sequence Disturbance Power of Resonant Grounded Distribution Networks," Energies, MDPI, vol. 12(5), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Yang & Yingwen Chen & Yiqun Liu & Yuchen Feng & Jianwan Ji & Christina W. Y. Wong & Xin Miao & Yanhong Tang, 2023. "Government–business relations, environmental information transparency, and Hu-line-related factors in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7215-7238, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Olejnik & Beata Zięba, 2022. "Improving the Efficiency of Earth Fault Detection by Fault Current Passage Indicators in Medium-Voltage Compensated Overhead Networks," Energies, MDPI, vol. 15(23), pages 1-19, November.
    2. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    3. Yu He & Xinhui Zhang & Wenhao Wu & Jun Zhang & Wenyuan Bai & Aiyu Guo & Yu Chen, 2022. "Faulty Line Selection Method Based on Comprehensive Dynamic Time Warping Distance in a Flexible Grounding System," Energies, MDPI, vol. 15(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4724-:d:411881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.