IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4690-d410843.html
   My bibliography  Save this article

Intensification of Short Chain Fatty Acid Production during the Alkaline Pretreatment of Fine-Sieving Fractions

Author

Listed:
  • Yanqing Duan

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Aijuan Zhou

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xiuping Yue

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China)

  • Zhichun Zhang

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yanjuan Gao

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yanhong Luo

    (College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China)

Abstract

Maximizing the internal carbon sources in raw wastewater was found to be an alternative option to alleviate the financial burden in external carbon sources (ECS) addition to the biological nutrient removal (BNR) process. Based on previous studies on particulate recovery via fine-sieving technologies, alkali pretreatment was used to improve the short-chain fatty acid (SCFA) production from the fine-sieving fractions (FSF). Hydrolysis performance and methane production were monitored to evaluate the reasons for the SCFA boost. Besides, the microbial community structure was evaluated by high-throughput sequencing. Furthermore, mass balance and financial benefits were preliminarily estimated. The results showed that alkali pretreatment effectively promoted the generation of SCFAs with 234 mg/g volatile suspended solids (VSS), almost double that of the control test. This was partially attributed to the efficient hydrolysis, with soluble polysaccharides and protein increased by 2.1 and 1.2 times compared to that of the control, respectively. Inhibition of methanogens was also devoted to the accumulation of SCFAs, with no methane production until 150 h at high pH value. Finally, a preliminary evaluation revealed that 44.51 kg/d SCFAs could be supplied as the electron donor for denitrification, significantly reducing the cost in ECS addition for most wastewater treatment plants (WWTPs) with carbon insufficiency.

Suggested Citation

  • Yanqing Duan & Aijuan Zhou & Xiuping Yue & Zhichun Zhang & Yanjuan Gao & Yanhong Luo, 2020. "Intensification of Short Chain Fatty Acid Production during the Alkaline Pretreatment of Fine-Sieving Fractions," Energies, MDPI, vol. 13(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4690-:d:410843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.
    2. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    5. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    6. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Muhammad Tariq Khan & Riaz Ahmad & Gengyuan Liu & Lixiao Zhang & Remo Santagata & Massimiliano Lega & Marco Casazza, 2024. "Potential Environmental Impacts of a Hospital Wastewater Treatment Plant in a Developing Country," Sustainability, MDPI, vol. 16(6), pages 1-18, March.
    8. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    9. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    10. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Ágota Bányai, 2021. "Energy Consumption-Based Maintenance Policy Optimization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    12. Min-Hwi Kim & Deuk-Won Kim & Gwangwoo Han & Jaehyeok Heo & Dong-Won Lee, 2021. "Ground Source and Sewage Water Source Heat Pump Systems for Block Heating and Cooling Network," Energies, MDPI, vol. 14(18), pages 1-22, September.
    13. Brok, Niclas Brabrand & Munk-Nielsen, Thomas & Madsen, Henrik & Stentoft, Peter A., 2020. "Unlocking energy flexibility of municipal wastewater aeration using predictive control to exploit price differences in power markets," Applied Energy, Elsevier, vol. 280(C).
    14. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    15. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-43, June.
    16. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    17. Rosa, A.P. & Chernicharo, C.A.L. & Lobato, L.C.S. & Silva, R.V. & Padilha, R.F. & Borges, J.M., 2018. "Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant," Renewable Energy, Elsevier, vol. 124(C), pages 21-26.
    18. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    19. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    20. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4690-:d:410843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.