IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4595-d408769.html
   My bibliography  Save this article

Improving Prediction Accuracy Concerning the Thermal Environment of a Data Center by Using Design of Experiments

Author

Listed:
  • Naoki Futawatari

    (NTT FACILITIES, INC., Minato-ku, Tokyo 1080023, Japan)

  • Yosuke Udagawa

    (NTT FACILITIES, INC., Minato-ku, Tokyo 1080023, Japan)

  • Taro Mori

    (Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 0608628, Japan)

  • Hirofumi Hayama

    (Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 0608628, Japan)

Abstract

In data centers, heating, ventilation, and air-conditioning (HVAC) consumes 30–40% of total energy consumption. Of that portion, 26% is attributed to fan power, the ventilation efficiency of which should thus be improved. As an alternative method for experimentations, computational fluid dynamics (CFD) is used. In this study, “parameter tuning”—which aims to improve the prediction accuracy of CFD simulation—is implemented by using the method known as “design of experiments”. Moreover, it is attempted to improve the thermal environment by using a CFD model after parameter tuning. As a result of the parameter tuning, the difference between the result of experimental-measurement results and simulation results for average inlet temperature of information-technology equipment (ITE) installed in the ventilation room of a test data center was within 0.2 °C at maximum. After tuning, the CFD model was used to verify the effect of advanced insulation such as raised-floor fixed panels and show the possibility of reducing fan power by 26% while keeping the recirculation ratio constant. Improving heat-insulation performance is a different approach from the conventional approach (namely, segregating cold/hot airflow) to improving ventilation efficiency, and it is a possible solution to deal with excessive heat generated in data centers.

Suggested Citation

  • Naoki Futawatari & Yosuke Udagawa & Taro Mori & Hirofumi Hayama, 2020. "Improving Prediction Accuracy Concerning the Thermal Environment of a Data Center by Using Design of Experiments," Energies, MDPI, vol. 13(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4595-:d:408769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emelie Wibron & Anna-Lena Ljung & T. Staffan Lundström, 2019. "Comparing Performance Metrics of Partial Aisle Containments in Hard Floor and Raised Floor Data Centers Using CFD," Energies, MDPI, vol. 12(8), pages 1-17, April.
    2. Jing Ni & Bowen Jin & Bo Zhang & Xiaowei Wang, 2017. "Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    3. Fujen Wang & Yishun Huang & BowoYuli Prasetyo, 2019. "Energy-Efficient Improvement Approaches through Numerical Simulation and Field Measurement for a Data Center," Energies, MDPI, vol. 12(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    2. Joanna Kajewska-Szkudlarek & Jan Bylicki & Justyna Stańczyk & Paweł Licznar, 2021. "Neural Approach in Short-Term Outdoor Temperature Prediction for Application in HVAC Systems," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "A Temperature-Risk and Energy-Saving Evaluation Model for Supporting Energy-Saving Measures for Data Center Server Rooms," Energies, MDPI, vol. 13(19), pages 1-22, October.
    2. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Ali Badiei & Eric Jadowski & Saba Sadati & Arash Beizaee & Jing Li & Leila Khajenoori & Hamid Reza Nasriani & Guiqiang Li & Xin Xiao, 2023. "The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    4. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    5. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    7. Kosuke Sasakura & Takeshi Aoki & Masayoshi Komatsu & Takeshi Watanabe, 2020. "Rack Temperature Prediction Model Using Machine Learning after Stopping Computer Room Air Conditioner in Server Room," Energies, MDPI, vol. 13(17), pages 1-17, August.
    8. Marcel Antal & Tudor Cioara & Ionut Anghel & Radoslaw Gorzenski & Radoslaw Januszewski & Ariel Oleksiak & Wojciech Piatek & Claudia Pop & Ioan Salomie & Wojciech Szeliga, 2019. "Reuse of Data Center Waste Heat in Nearby Neighborhoods: A Neural Networks-Based Prediction Model," Energies, MDPI, vol. 12(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4595-:d:408769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.