IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4574-d408528.html
   My bibliography  Save this article

Effects of Additional Xylanase on Saccharification and Ethanol Fermentation of Ammonia-Pretreated Corn Stover and Rice Straw

Author

Listed:
  • Seung Hyeon Park

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea)

  • Thi Thu Huong Pham

    (Faculty of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam)

  • Tae Hyun Kim

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Korea)

Abstract

Synergistic effect of cellulase and hemicellulase (xylanase) was evaluated because lignocellulosic material is a heterogeneous complex of cellulose and hemicellulose. Various effects of HTec2 addition on enzymatic saccharification and fermentation were evaluated using two different substrates such as corn stover and rice straw. Corn stover and rice straw were pretreated by the LMAA (low-moisture anhydrous ammonia) method at the preselected same conditions (90 °C, 120 h, moisture content = 50%, NH 3 loading = 0.1 g NH 3 /g). It was observed that the enzymatic saccharification yield of pretreated corn stover (76.4% for glucan digestibility) was higher than that of pretreated rice straw (70.9% for glucan) using CTec2 cellulase without HTec2 addition. Glucan digestibility of pretreated corn stover was significantly increased from 76.4% to 91.1% when the HTec2/CTec2 ( v / v ) increased from 0 to 10. However, it was interesting that the ethanol production was decreased from 89.9% to 76.3% for SSF and 118.0% to 87.9% for SSCF at higher HTec2/CTec2. As the glucan loading increased from 2.0% to 7.0%, the ethanol yields of both SSF and SSCF were decreased from 96.3% to 88.9% and from 116.6% to 92.4%, respectively. In addition, the smallest inoculum size (optical density of 0.25) resulted in the highest ethanol production (20.5 g/L).

Suggested Citation

  • Seung Hyeon Park & Thi Thu Huong Pham & Tae Hyun Kim, 2020. "Effects of Additional Xylanase on Saccharification and Ethanol Fermentation of Ammonia-Pretreated Corn Stover and Rice Straw," Energies, MDPI, vol. 13(17), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4574-:d:408528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    2. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    3. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    4. Ben-Iwo, Juliet & Manovic, Vasilije & Longhurst, Philip, 2016. "Biomass resources and biofuels potential for the production of transportation fuels in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 172-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    2. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    3. Ko, Chun-Han & Wang, Ya-Nang & Chang, Fang-Chih & Chen, Jia-Jie & Chen, Wen-Hua & Hwang, Wen-Song, 2012. "Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan," Energy, Elsevier, vol. 44(1), pages 329-334.
    4. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    5. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    6. Demiray, Ekin & Karatay, Sevgi Ertuğrul & Dönmez, Gönül, 2018. "Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis," Energy, Elsevier, vol. 159(C), pages 988-994.
    7. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    10. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    12. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    13. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    14. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    15. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    16. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    17. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    18. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    19. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4574-:d:408528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.