IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4460-d405727.html
   My bibliography  Save this article

Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects

Author

Listed:
  • Michael Stadler

    (Bankable Energy|XENDEE Inc., 6540 Lusk Blvd, San Diego, CA 92121, USA
    Bioenergy and Sustainable Technologies Research GmbH, 3250 Wieselburg, Austria
    Center for Energy and Innovative Technologies (CET), 3681 Hofamt Priel, Austria
    Center for Energy Research, University of California at San Diego, 9500 Gilman Dr., San Diego, CA 92037, USA)

  • Zack Pecenak

    (Bankable Energy|XENDEE Inc., 6540 Lusk Blvd, San Diego, CA 92121, USA)

  • Patrick Mathiesen

    (Bankable Energy|XENDEE Inc., 6540 Lusk Blvd, San Diego, CA 92121, USA)

  • Kelsey Fahy

    (Bankable Energy|XENDEE Inc., 6540 Lusk Blvd, San Diego, CA 92121, USA)

  • Jan Kleissl

    (Center for Energy Research, University of California at San Diego, 9500 Gilman Dr., San Diego, CA 92037, USA)

Abstract

Mixed Integer Linear Programming (MILP) optimization algorithms provide accurate and clear solutions for Microgrid and Distributed Energy Resources projects. Full-scale optimization approaches optimize all time-steps of data sets (e.g., 8760 time-step and higher resolutions), incurring extreme and unpredictable run-times, often prohibiting such approaches for effective Microgrid designs. To reduce run-times down-sampling approaches exist. Given that the literature evaluates the full-scale and down-sampling approaches only for limited numbers of case studies, there is a lack of a more comprehensive study involving multiple Microgrids. This paper closes this gap by comparing results and run-times of a full-scale 8760 h time-series MILP to a peak preserving day-type MILP for 13 real Microgrid projects. The day-type approach reduces the computational time between 85% and almost 100% (from 2 h computational time to less than 1 min). At the same time the day-type approach keeps the objective function (OF) differences below 1.5% for 77% of the Microgrids. The other cases show OF differences between 6% and 13%, which can be reduced to 1.5% or less by applying a two-stage hybrid approach that designs the Microgrid based on down-sampled data and then performs a full-scale dispatch algorithm. This two stage approach results in 20–99% run-time savings.

Suggested Citation

  • Michael Stadler & Zack Pecenak & Patrick Mathiesen & Kelsey Fahy & Jan Kleissl, 2020. "Performance Comparison between Two Established Microgrid Planning MILP Methodologies Tested On 13 Microgrid Projects," Energies, MDPI, vol. 13(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4460-:d:405727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cardoso, G. & Stadler, M. & Mashayekh, S. & Hartvigsson, E., 2017. "The impact of ancillary services in optimal DER investment decisions," Energy, Elsevier, vol. 130(C), pages 99-112.
    2. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    3. Stadler, M. & Groissböck, M. & Cardoso, G. & Marnay, C., 2014. "Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel," Applied Energy, Elsevier, vol. 132(C), pages 557-567.
    4. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    5. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    6. Pecenak, Zachary K. & Stadler, Michael & Fahy, Kelsey, 2019. "Efficient multi-year economic energy planning in microgrids," Applied Energy, Elsevier, vol. 255(C).
    7. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    8. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    9. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    10. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    11. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(7), pages 1-32, March.
    2. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    3. Guodong Liu & Zhi Li & Yaosuo Xue & Kevin Tomsovic, 2022. "Microgrid Assisted Design for Remote Areas," Energies, MDPI, vol. 15(10), pages 1-23, May.
    4. Marcel Nicola & Claudiu-Ionel Nicola, 2021. "Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers," Energies, MDPI, vol. 14(2), pages 1-25, January.
    5. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    6. Mohamed S. Abdalzaher & Mostafa M. Fouda & Mohamed I. Ibrahem, 2022. "Data Privacy Preservation and Security in Smart Metering Systems," Energies, MDPI, vol. 15(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    2. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    3. Mathiesen, Patrick & Stadler, Michael & Kleissl, Jan & Pecenak, Zachary, 2021. "Techno-economic optimization of islanded microgrids considering intra-hour variability," Applied Energy, Elsevier, vol. 304(C).
    4. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    5. Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
    6. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    7. Cardoso, Gonçalo & Brouhard, Thomas & DeForest, Nicholas & Wang, Dai & Heleno, Miguel & Kotzur, Leander, 2018. "Battery aging in multi-energy microgrid design using mixed integer linear programming," Applied Energy, Elsevier, vol. 231(C), pages 1059-1069.
    8. Flores, Robert J. & Brouwer, Jacob, 2018. "Optimal design of a distributed energy resource system that economically reduces carbon emissions," Applied Energy, Elsevier, vol. 232(C), pages 119-138.
    9. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    12. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    13. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
    14. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    15. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    16. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    17. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Mohammed Alruwaili & Liana Cipcigan, 2022. "Optimal Annual Operational Cost of a Hybrid Renewable-Based Microgrid to Increase the Power Resilience of a Critical Facility," Energies, MDPI, vol. 15(21), pages 1-23, October.
    19. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
    20. Mansoor, Muhammad & Stadler, Michael & Zellinger, Michael & Lichtenegger, Klaus & Auer, Hans & Cosic, Armin, 2021. "Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4460-:d:405727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.