IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4408-d404505.html
   My bibliography  Save this article

Short-Term Electricity Price Forecasting Based on Similar Day-Based Neural Network

Author

Listed:
  • Chun-Yao Lee

    (Department of Electrical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Taoyuan City 320, Taiwan)

  • Chang-En Wu

    (Department of Electrical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road, Zhongli District, Taoyuan City 320, Taiwan)

Abstract

This paper presents four refined distance models to the application of forecasting short-term electricity price namely Euclidean norm, Manhattan distance, cosine coefficient, and Pearson correlation coefficient. The four refined models were constructed and used to select the days, which are like a reference day in electricity prices and loads, called similar days in this study. Using the similar days, the electricity prices of a forecast day were further obtained by similar day regression (SDR) and similar day based artificial neural network (SDANN). The simulation results of the case of the PJM (Pennsylvania, New Jersey and Maryland) interchange energy market indicate the superiority and availability of the selection 45 framework days and three similar days based on Pearson correlation coefficient model.

Suggested Citation

  • Chun-Yao Lee & Chang-En Wu, 2020. "Short-Term Electricity Price Forecasting Based on Similar Day-Based Neural Network," Energies, MDPI, vol. 13(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4408-:d:404505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katarzyna Hubicka & Grzegorz Marcjasz & Rafal Weron, 2018. "A note on averaging day-ahead electricity price forecasts across calibration windows," HSC Research Reports HSC/18/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    2. Esmaili, Masoud & Shayanfar, Heidar Ali & Moslemi, Ramin, 2014. "Locating series FACTS devices for multi-objective congestion management improving voltage and transient stability," European Journal of Operational Research, Elsevier, vol. 236(2), pages 763-773.
    3. Chun-Yao Lee & Maickel Tuegeh, 2020. "An Optimal Solution for Smooth and Non-Smooth Cost Functions-Based Economic Dispatch Problem," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Khosravi, Abbas & Nahavandi, Saeid & Creighton, Doug, 2013. "Quantifying uncertainties of neural network-based electricity price forecasts," Applied Energy, Elsevier, vol. 112(C), pages 120-129.
    5. Lewis, Geoffrey McD., 2010. "Estimating the value of wind energy using electricity locational marginal price," Energy Policy, Elsevier, vol. 38(7), pages 3221-3231, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangrui Zhang & Peng Tao & Xiangming Wu & Chenguang Yang & Guang Han & Hui Zhou & Yinlong Hu, 2022. "Hourly Electricity Price Prediction for Electricity Market with High Proportion of Wind and Solar Power," Energies, MDPI, vol. 15(4), pages 1-13, February.
    2. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Tingting Hou & Rengcun Fang & Jinrui Tang & Ganheng Ge & Dongjun Yang & Jianchao Liu & Wei Zhang, 2021. "A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms," Energies, MDPI, vol. 14(22), pages 1-21, November.
    4. Alireza Pourdaryaei & Mohammad Mohammadi & Mazaher Karimi & Hazlie Mokhlis & Hazlee A. Illias & Seyed Hamidreza Aghay Kaboli & Shameem Ahmad, 2021. "Recent Development in Electricity Price Forecasting Based on Computational Intelligence Techniques in Deregulated Power Market," Energies, MDPI, vol. 14(19), pages 1-28, September.
    5. Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    3. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    4. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    5. Baer, Paul & Brown, Marilyn A. & Kim, Gyungwon, 2015. "The job generation impacts of expanding industrial cogeneration," Ecological Economics, Elsevier, vol. 110(C), pages 141-153.
    6. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    7. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    8. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    9. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    10. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    11. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    12. Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
    13. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    14. Nie, Ying & Li, Ping & Wang, Jianzhou & Zhang, Lifang, 2024. "A novel multivariate electrical price bi-forecasting system based on deep learning, a multi-input multi-output structure and an operator combination mechanism," Applied Energy, Elsevier, vol. 366(C).
    15. Sushil Kumar Gupta & Lalit Kumar & Manoj Kumar Kar & Sanjay Kumar, 2022. "Optimal reactive power dispatch under coordinated active and reactive load variations using FACTS devices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2672-2682, October.
    16. Brandstätt, Christine & Brunekreeft, Gert & Friedrichsen, Nele, 2011. "Locational signals to reduce network investments in smart distribution grids: What works and what not?," Utilities Policy, Elsevier, vol. 19(4), pages 244-254.
    17. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    18. Faisal Tariq & Salem Alelyani & Ghulam Abbas & Ayman Qahmash & Mohammad Rashid Hussain, 2020. "Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm," Energies, MDPI, vol. 13(23), pages 1-36, November.
    19. Lamy, Julian V. & Jaramillo, Paulina & Azevedo, Inês L. & Wiser, Ryan, 2016. "Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region," Energy Policy, Elsevier, vol. 96(C), pages 341-350.
    20. Chun-Yao Lee & Kuan-Yu Huang & Yi-Xing Shen & Yao-Chen Lee, 2020. "Improved Weighted k -Nearest Neighbor Based on PSO for Wind Power System State Recognition," Energies, MDPI, vol. 13(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4408-:d:404505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.