IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4259-d400226.html
   My bibliography  Save this article

Measurement-Based Distribution Grid Harmonic Impedance Models and Their Uncertainties

Author

Listed:
  • Ravi Shankar Singh

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands)

  • Vladimir Ćuk

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands)

  • Sjef Cobben

    (Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands)

Abstract

Aggregated Norton’s equivalent models, with parallel impedance and current injection at different harmonic frequencies are used to model the distribution grid in harmonic studies. These models are derived based on measurements and/or prior knowledge about the grid. The measurement-based distribution (sub-)grid impedance estimation method uses harmonic phasors of 3-phase current and voltage measurements to capture the response of the distribution (sub-)grid before and after an event in the utility side of the grid. However, due to increasing non-linear components in the grid, knowledge about uncertainty in parameters of such equivalent models which intrinsically describe a linear grid becomes important. The aim of this paper is to present two novel methods to calculate the uncertainty of the measurement-based Norton’s equivalent harmonic model of the distribution (sub-)grids as seen from the utility side at the Point of Common Coupling (PCC). The impedance and the uncertainty calculations are demonstrated on a simulated network.

Suggested Citation

  • Ravi Shankar Singh & Vladimir Ćuk & Sjef Cobben, 2020. "Measurement-Based Distribution Grid Harmonic Impedance Models and Their Uncertainties," Energies, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4259-:d:400226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4259/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jong-Il Park & Chang-Hyun Park, 2022. "Harmonic Contribution Assessment Based on the Random Sample Consensus and Recursive Least Square Methods," Energies, MDPI, vol. 15(17), pages 1-18, September.
    2. Christian A. Rojas & Samir Kouro & Ruben Inzunza & Yasuaki Mitsugi & Abraham M. Alcaide, 2022. "Harmonic Impedance Model of Multiple Utility-Interactive Multilevel Photovoltaic Inverters," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4259-:d:400226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.