IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4255-d400082.html
   My bibliography  Save this article

Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data

Author

Listed:
  • Jakub Jurasz

    (Department of Engineering Management, Faculty of Management, AGH University, 30-059 Cracow, Poland
    School of Business, Society and Engineering, MDH University, 722-20 Västerås, Sweden)

  • Marcin Wdowikowski

    (Institute of Meteorology and Water Management-National Research Institute, 01-673 Warsaw, Poland)

  • Mariusz Figurski

    (Institute of Meteorology and Water Management-National Research Institute, 01-673 Warsaw, Poland
    Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

Abstract

The Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim to explore how well those can be modeled based on the meteorological measurements provided by the Institute of Meteorology and Water Management. The hourly time series of PV generation on a country level and irradiation, wind speed, and temperature measurements from 23 meteorological stations covering one month are used as inputs to create an artificial neural network. The analysis indicates that available measurements combined with artificial neural networks can simulate PV generation on a national level with a mean percentage error of 3.2%.

Suggested Citation

  • Jakub Jurasz & Marcin Wdowikowski & Mariusz Figurski, 2020. "Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data," Energies, MDPI, vol. 13(16), pages 1-10, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4255-:d:400082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    2. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    3. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    4. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Krechowicz & Adam Krechowicz & Lech Lichołai & Artur Pawelec & Jerzy Zbigniew Piotrowski & Anna Stępień, 2022. "Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning," Energies, MDPI, vol. 15(11), pages 1-21, May.
    2. Natalia Iwaszczuk & Mariusz Trela, 2021. "Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland," Energies, MDPI, vol. 14(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    2. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    3. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    4. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    6. Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
    7. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    8. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    9. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    10. Arkaitz Rabanal & Alain Ulazia & Gabriel Ibarra-Berastegi & Jon Sáenz & Unai Elosegui, 2018. "MIDAS: A Benchmarking Multi-Criteria Method for the Identification of Defective Anemometers in Wind Farms," Energies, MDPI, vol. 12(1), pages 1-19, December.
    11. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    13. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    14. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    15. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    17. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    18. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    19. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    20. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4255-:d:400082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.