IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4138-d397154.html
   My bibliography  Save this article

The Analysis of Working Parameters Decrease in Photovoltaic Modules as a Result of Dust Deposition

Author

Listed:
  • Ewa Klugmann-Radziemska

    (Department of Energy Conversion and Storage, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland)

  • Małgorzata Rudnicka

    (Department of Energy Conversion and Storage, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland)

Abstract

The aspect of dust accumulation on the surface of photovoltaic (PV) modules should be thoroughly understood in order to minimize possible obstacles affecting energy generation. Several elements affect the amount of pollutant gathered on the surface of a solar device, mainly its localization, which is irreversibly linked to factors such as annual rainfall, occasional snow coverage, or, in a dry climate, increased blow of dust during sandstorms and higher concentration of soil particles in desert areas. Other than weather conditions in the region, PV installation type also plays an important role as a more horizontal position is favorable for the accumulation of soil. The research carried out and presented in this paper was done for dust accumulated naturally on PV modules kept in outdoor conditions and dust artificially sieved onto the front glass cover of modules. The experiment performed by the authors, including artificially deposited dust, defined the linear relationship between surface dust density of different types of contaminants and efficiency decline up to 10% for two different PV modules. The additional field study carried out in external conditions for a coastal region in Northern Poland concluded that, after one year, exposition photovoltaic conversion efficiency can be over 10% lower, with a slight performance improvement for the autumn season characterized by heavy rainfall.

Suggested Citation

  • Ewa Klugmann-Radziemska & Małgorzata Rudnicka, 2020. "The Analysis of Working Parameters Decrease in Photovoltaic Modules as a Result of Dust Deposition," Energies, MDPI, vol. 13(16), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4138-:d:397154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaldellis, J.K. & Kapsali, M., 2011. "Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements," Energy, Elsevier, vol. 36(8), pages 5154-5161.
    2. Beattie, Neil S. & Moir, Robert S. & Chacko, Charlslee & Buffoni, Giorgio & Roberts, Simon H. & Pearsall, Nicola M., 2012. "Understanding the effects of sand and dust accumulation on photovoltaic modules," Renewable Energy, Elsevier, vol. 48(C), pages 448-452.
    3. Kaldellis, J.K. & Fragos, P. & Kapsali, M., 2011. "Systematic experimental study of the pollution deposition impact on the energy yield of photovoltaic installations," Renewable Energy, Elsevier, vol. 36(10), pages 2717-2724.
    4. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    5. Hegazy, Adel A, 2001. "Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors," Renewable Energy, Elsevier, vol. 22(4), pages 525-540.
    6. El-Shobokshy, Mohammad S. & Hussein, Fahmy M., 1993. "Degradation of photovoltaic cell performance due to dust deposition on to its surface," Renewable Energy, Elsevier, vol. 3(6), pages 585-590.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    2. Antonia Sônia A. C. Diniz & Tulio P. Duarte & Suellen A. C. Costa & Daniel Sena Braga & Vinicius Camatta Santana & Lawrence L. Kazmerski, 2022. "Soiling Spectral and Module Temperature Effects: Comparisons of Competing Operating Parameters for Four Commercial PV Module Technologies," Energies, MDPI, vol. 15(15), pages 1-18, July.
    3. Natalia Iwaszczuk & Mariusz Trela, 2021. "Analysis of the Impact of the Assumed Moment of Meeting Total Energy Demand on the Profitability of Photovoltaic Installations for Households in Poland," Energies, MDPI, vol. 14(6), pages 1-15, March.
    4. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    5. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    6. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Klugmann-Radziemska, Ewa, 2015. "Degradation of electrical performance of a crystalline photovoltaic module due to dust deposition in northern Poland," Renewable Energy, Elsevier, vol. 78(C), pages 418-426.
    3. Darwish, Zeki Ahmed & Kazem, Hussein A. & Sopian, K. & Al-Goul, M.A. & Alawadhi, Hussain, 2015. "Effect of dust pollutant type on photovoltaic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 735-744.
    4. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    5. Zaihidee, Fardila Mohd & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2016. "Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1267-1278.
    6. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    7. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Sun, Ke & Lu, Lin & Jiang, Yu & Wang, Yuanhao & Zhou, Kun & He, Zhu, 2018. "Integrated effects of PM2.5 deposition, module surface conditions and nanocoatings on solar PV surface glass transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4107-4120.
    9. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    10. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    11. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Sun, Tianyi & Liu, Peng, 2021. "A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system," Energy, Elsevier, vol. 234(C).
    12. Hammad, Bashar & Al–Abed, Mohammad & Al–Ghandoor, Ahmed & Al–Sardeah, Ali & Al–Bashir, Adnan, 2018. "Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2218-2234.
    13. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    14. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    15. Picotti, G. & Borghesani, P. & Cholette, M.E. & Manzolini, G., 2018. "Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2343-2357.
    16. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    17. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    18. Maghami, Mohammad Reza & Hizam, Hashim & Gomes, Chandima & Radzi, Mohd Amran & Rezadad, Mohammad Ismael & Hajighorbani, Shahrooz, 2016. "Power loss due to soiling on solar panel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1307-1316.
    19. Huang, Wenfeng & Zhou, Kun & Sun, Ke & He, Zhu, 2019. "Effects of wind flow structure, particle flow and deposition pattern on photovoltaic energy harvest around a block," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Lu, Hao & Zhao, Wenjun, 2019. "CFD prediction of dust pollution and impact on an isolated ground-mounted solar photovoltaic system," Renewable Energy, Elsevier, vol. 131(C), pages 829-840.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4138-:d:397154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.