IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4064-d395137.html
   My bibliography  Save this article

Lessons to Learn from Post-Installation Pollution Levels Assessment of Some Distribution Insulators

Author

Listed:
  • Issouf Fofana

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

  • Janvier Sylvestre N’cho

    (Département Génie Électrique et Électronique, Institut National Polytechnique Houphouët Boigny (INP-HB), Yamoussoukro BP 1093, Cote D’Ivoire)

  • Amidou Betie

    (Département Génie Électrique et Électronique, Institut National Polytechnique Houphouët Boigny (INP-HB), Yamoussoukro BP 1093, Cote D’Ivoire)

  • Epiphane Hounton

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

  • Fethi Meghnefi

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

  • Kouba Marie Lucia Yapi

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada)

Abstract

Among the main causes of outdoor insulation failures is their poor specifications in terms of leakage distances. This happens when the selected criteria are unable to cope with all the stresses imposed by the changes in environmental pollutions. Therefore, it is important for utilities to fully understand the actual pollution characteristics of the service environment in which the insulators are operating. In this paper, the pollution severity and performance of some 13.2 kV ceramic insulators, sampled in different areas of a Canadian aluminum factory, are assessed. The investigations were performed taking into account the influence of air humidity. Various characteristics were investigated to assess the pollution levels of the insulators, such as equivalent salt deposit density (ESDD) and non-soluble deposit density (NSDD), surface resistance, and leakage current characteristics (density, 3rd harmonic amplitude, and phase). It was witnessed that the insulators, collected around the factory, were much more polluted in comparison to the initial expectation. The pollution level should not be considered static due to the environmental parameters’ dynamics. Lessons to learn: the reliability of an electrical grid is dependent on components whose own reliability is strongly affected by external factors, of which there is often a poor awareness. If care is not taken to re-evaluate the post-installation pollution levels of the insulators, the light may simply turn out!

Suggested Citation

  • Issouf Fofana & Janvier Sylvestre N’cho & Amidou Betie & Epiphane Hounton & Fethi Meghnefi & Kouba Marie Lucia Yapi, 2020. "Lessons to Learn from Post-Installation Pollution Levels Assessment of Some Distribution Insulators," Energies, MDPI, vol. 13(16), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4064-:d:395137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Majid Hussain & Muhammad Akmal Chaudhary & Abdul Razaq, 2019. "Mechanism of Saline Deposition and Surface Flashover on High-Voltage Insulators near Shoreline: Mathematical Models and Experimental Validations," Energies, MDPI, vol. 12(19), pages 1-20, September.
    2. Siyi Chen & Zhijin Zhang, 2020. "Dynamic Pollution Prediction Model of Insulators Based on Atmospheric Environmental Parameters," Energies, MDPI, vol. 13(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Lamine Amrani & Slimane Bouazabia & Issouf Fofana & Fethi Meghnefi & Marouane Jabbari & Djazia Khelil & Amina Boudiaf, 2021. "Modelling Surface Electric Discharge Propagation on Polluted Insulators under AC Voltage," Energies, MDPI, vol. 14(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahong He & Kang He & Bingtuan Gao, 2019. "Modeling of Dry Band Formation and Arcing Processes on the Polluted Composite Insulator Surface," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Haitao Yang & Zhensheng Wu & Weinan Dong & Junpeng Dang & Hao Ren, 2021. "Analysis of the Influence of Silicone Rubber Aging on the Transmission Parameters of Terahertz Waves," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Issouf Fofana & Stephan Brettschneider, 2022. "Outdoor Insulation and Gas-Insulated Switchgears," Energies, MDPI, vol. 15(21), pages 1-7, November.
    4. Yifan Liao & Qiao Wang & Lin Yang & Zhiqiang Kuang & Yanpeng Hao & Chuyan Zhang, 2021. "Discharge Behavior and Morphological Characteristics of Suspended Water-Drop on Shed Edge during Rain Flashover of Polluted Large-Diameter Post Insulator," Energies, MDPI, vol. 14(6), pages 1-14, March.
    5. Peter Krammer & Marcel Kvassay & Ján Mojžiš & Martin Kenyeres & Miloš Očkay & Ladislav Hluchý & Ľuboš Pavlov & Ľuboš Skurčák, 2022. "Using Satellite Imagery to Improve Local Pollution Models for High-Voltage Transmission Lines and Insulators," Future Internet, MDPI, vol. 14(4), pages 1-17, March.
    6. Zhijin Zhang & Hang Zhang & Song Yue & Hao Wang, 2023. "Contamination Deposit and Model of Insulator," Energies, MDPI, vol. 16(6), pages 1-3, March.
    7. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4064-:d:395137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.