IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3816-d389590.html
   My bibliography  Save this article

Net Present Value Analysis of a Hybrid Gas Engine-Energy Storage System in the Balancing Mechanism

Author

Listed:
  • Farhad Anvari-Azar

    (Viridis Power, 17 The Courtyard, Gorsey Lane, Coleshill B46 1JA, UK)

  • Dani Strickland

    (Wolfson School, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK)

  • Neil Filkin

    (Viridis Power, 17 The Courtyard, Gorsey Lane, Coleshill B46 1JA, UK)

  • Harry Townshend

    (Viridis Power, 17 The Courtyard, Gorsey Lane, Coleshill B46 1JA, UK)

Abstract

There is the potential for hybridised gas engine-energy storage systems to participate in the Balancing Mechanism (BM) by offering a product that marries the advantages of both units. The higher price offerings are currently dominated by pumped storage (PS) assets. Given their high-flexibility, PS plants mostly offer at higher prices, but respond quicker and can run for a smaller minimum run time than a gas engine on its own. The operation of the hybrid system must match the operation of the pumped storage plants, to be able to claim a space in this part of the BM market including meeting a minimum run time and minimum start time. The business case is dependent on battery costs which in turn depend on size and operational strategy. This paper uses a case study approach to estimate Net Present Value of a hybrid system. The paper uses a mixture of publicly available data and industrially provided data within its analysis. The paper concludes that battery cost and lifespan are still issues and that battery-engine hybrids are not economic at present. There is indication in the modelling that under very favorable conditions such as low compound interest rates, an acceptance of offers above 7 times/day and low gas price, it is possible to see a return on investment of a lithium ion-based battery-gas engine hybrid.

Suggested Citation

  • Farhad Anvari-Azar & Dani Strickland & Neil Filkin & Harry Townshend, 2020. "Net Present Value Analysis of a Hybrid Gas Engine-Energy Storage System in the Balancing Mechanism," Energies, MDPI, vol. 13(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3816-:d:389590
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleonora Achiluzzi & Kirushaanth Kobikrishna & Abenayan Sivabalan & Carlos Sabillon & Bala Venkatesh, 2020. "Optimal Asset Planning for Prosumers Considering Energy Storage and Photovoltaic (PV) Units: A Stochastic Approach," Energies, MDPI, vol. 13(7), pages 1-20, April.
    2. Nistor, Silviu & Wu, Jianzhong & Sooriyabandara, Mahesh & Ekanayake, Janaka, 2015. "Capability of smart appliances to provide reserve services," Applied Energy, Elsevier, vol. 138(C), pages 590-597.
    3. Sofiane Kichou & Nikolaos Skandalos & Petr Wolf, 2020. "Evaluation of Photovoltaic and Battery Storage Effects on the Load Matching Indicators Based on Real Monitored Data," Energies, MDPI, vol. 13(11), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Shamshiri & Chin Kim Gan & Junainah Sardi & Mau Teng Au & Wei Hown Tee, 2020. "Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    3. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    4. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    5. Qadrdan, Meysam & Cheng, Meng & Wu, Jianzhong & Jenkins, Nick, 2017. "Benefits of demand-side response in combined gas and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 360-369.
    6. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    7. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    8. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    9. Marszal-Pomianowska, Anna & Widén, Joakim & Le Dréau, Jérôme & Heiselberg, Per & Bak-Jensen, Birgitte & de Cerio Mendaza, Iker Diaz, 2020. "Operation of power distribution networks with new and flexible loads: A case of existing residential low voltage network," Energy, Elsevier, vol. 202(C).
    10. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    12. Bertsch, Valentin & Harold, Jason & Fell, Harrison, 2019. "Consumer preferences for end-use specific curtailable electricity contracts on household appliances during peak load hours," Papers WP632, Economic and Social Research Institute (ESRI).
    13. Curtis, John & Brazil, William & Harold, Jason, 2019. "Understanding preference heterogeneity in electricity services: the case of domestic appliance curtailment contracts," Papers WP638, Economic and Social Research Institute (ESRI).
    14. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).
    15. Kolte, Ashutosh & Festa, Giuseppe & Ciampi, Francesco & Meissner, Dirk & Rossi, Matteo, 2023. "Exploring corporate venture capital investments in clean energy—a focus on the Asia-Pacific region," Applied Energy, Elsevier, vol. 334(C).
    16. Felix Heider & Amra Jahic & Maik Plenz & Detlef Schulz, 2022. "Extended Residential Power Management Interface for Flexibility Communication and Uncertainty Reduction for Flexibility System Operators," Energies, MDPI, vol. 15(4), pages 1-23, February.
    17. Leonardo Fernandes & António Miguel Rosado da Cruz & Estrela Ferreira Cruz & Sérgio Ivan Lopes, 2023. "A Review on Adopting Blockchain and IoT Technologies for Fostering the Circular Economy in the Electrical and Electronic Equipment Value Chain," Sustainability, MDPI, vol. 15(5), pages 1-23, March.
    18. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
    19. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    20. Emily Cox, 2016. "Assessing energy security in a lowcarbon context: the case of electricity in the UK," SPRU Working Paper Series 2016-07, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3816-:d:389590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.