IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3698-d387320.html
   My bibliography  Save this article

Aggregated Conducted Electromagnetic Interference Generated by DC/DC Converters with Deterministic and Random Modulation

Author

Listed:
  • Hermes Loschi

    (Institute of Automatic Control, Electronics and Electrical Engineering, the University of Zielona Gora, 65-417 Zielona Góra, Poland)

  • Robert Smolenski

    (Institute of Automatic Control, Electronics and Electrical Engineering, the University of Zielona Gora, 65-417 Zielona Góra, Poland)

  • Piotr Lezynski

    (Institute of Automatic Control, Electronics and Electrical Engineering, the University of Zielona Gora, 65-417 Zielona Góra, Poland)

  • Douglas Nascimento

    (Institute of Automatic Control, Electronics and Electrical Engineering, the University of Zielona Gora, 65-417 Zielona Góra, Poland)

  • Galina Demidova

    (Faculty of Control Systems and Robotics, ITMO University, 197101 Saint Petersburg, Russia)

Abstract

The assessment of electromagnetic compatibility (EMC) is important for both technical and legal reasons. This manuscript addresses specific issues that should be taken into account for proper EMC assessment of energy systems that use power electronic interfaces. The standardized EMC measuring techniques have been used in a laboratory setup consisting in two identical DC/DC converters with deterministic and random modulations. Measuring difficulties caused by the low frequency envelopes, resulting from frequency beating accompanying aggregation of harmonic components of similar frequencies, were indicated as a phenomenon that might lead to significant problems during the EMC assessment using currently binding standards. The experimental results describing deterministic and random modulated converters might be useful for practitioners implementing power interfaces in microgrids and power systems as well as for researchers involved in EMC assurance of power systems consisting in multiple power electronic interfaces.

Suggested Citation

  • Hermes Loschi & Robert Smolenski & Piotr Lezynski & Douglas Nascimento & Galina Demidova, 2020. "Aggregated Conducted Electromagnetic Interference Generated by DC/DC Converters with Deterministic and Random Modulation," Energies, MDPI, vol. 13(14), pages 1-9, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3698-:d:387320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arunkumari, T. & Indragandhi, V., 2017. "An overview of high voltage conversion ratio DC-DC converter configurations used in DC micro-grid architectures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 670-687.
    2. Hermes Loschi & Piotr Lezynski & Robert Smolenski & Douglas Nascimento & Wojciech Sleszynski, 2020. "FPGA-Based System for Electromagnetic Interference Evaluation in Random Modulated DC/DC Converters," Energies, MDPI, vol. 13(9), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phuong Nam Dao & Hong Quang Nguyen & Minh-Duc Ngo & Seon-Ju Ahn, 2020. "On Stability of Perturbed Nonlinear Switched Systems with Adaptive Reinforcement Learning," Energies, MDPI, vol. 13(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    2. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    3. Remigiusz Wiśniewski & Marcin Wojnakowski & Zhiwu Li, 2022. "Design and Verification of Petri-Net-Based Cyber-Physical Systems Oriented toward Implementation in Field-Programmable Gate Arrays—A Case Study Example," Energies, MDPI, vol. 16(1), pages 1-19, December.
    4. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    6. Hermes Loschi & Piotr Lezynski & Robert Smolenski & Douglas Nascimento & Wojciech Sleszynski, 2020. "FPGA-Based System for Electromagnetic Interference Evaluation in Random Modulated DC/DC Converters," Energies, MDPI, vol. 13(9), pages 1-14, May.
    7. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    8. Boning Wu & Xuesong Zhou & Youjie Ma, 2020. "Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy," Energies, MDPI, vol. 13(6), pages 1-21, March.
    9. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    10. Seda Ustun Ercan & Angel Pena-Quintal & Dave Thomas, 2023. "The Effect of Spread Spectrum Modulation on Power Line Communications," Energies, MDPI, vol. 16(13), pages 1-15, July.
    11. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    12. Shin-Ju Chen & Sung-Pei Yang & Chao-Ming Huang & Huann-Ming Chou & Meng-Jie Shen, 2018. "Interleaved High Step-Up DC-DC Converter Based on Voltage Multiplier Cell and Voltage-Stacking Techniques for Renewable Energy Applications," Energies, MDPI, vol. 11(7), pages 1-17, June.
    13. Milad Bahrami & Jean-Philippe Martin & Gaël Maranzana & Serge Pierfederici & Mathieu Weber & Farid Meibody-Tabar & Majid Zandi, 2020. "Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System," Mathematics, MDPI, vol. 8(5), pages 1-28, May.
    14. Remigiusz Wisniewski, 2021. "Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays," Energies, MDPI, vol. 14(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3698-:d:387320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.