IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3506-d381556.html
   My bibliography  Save this article

Frequency Stability Evaluation in Low Inertia Systems Utilizing Smart Hierarchical Controllers

Author

Listed:
  • Minas Patsalides

    (FOSS Research Centre for Sustainable Energy, University of Cyprus, 1678 Nicosia, Cyprus)

  • Christina N. Papadimitriou

    (FOSS Research Centre for Sustainable Energy, University of Cyprus, 1678 Nicosia, Cyprus)

  • Venizelos Efthymiou

    (FOSS Research Centre for Sustainable Energy, University of Cyprus, 1678 Nicosia, Cyprus)

  • Roberto Ciavarella

    (ENEA–Energy Technologies Department, 00196 Rome, Italy)

  • Marialaura Di Somma

    (ENEA–Energy Technologies Department, 80055 Portici (Naples), Italy)

  • Anna Wakszyńska

    (Department of Automation and System Analysis, Institute of Power Engineering (IEn) Gdańsk Division, PL80-870 Gdańsk, Poland)

  • Michał Kosmecki

    (Department of Automation and System Analysis, Institute of Power Engineering (IEn) Gdańsk Division, PL80-870 Gdańsk, Poland)

  • Giorgio Graditi

    (ENEA–Energy Technologies Department, 80055 Portici (Naples), Italy)

  • Maria Valenti

    (ENEA–Energy Technologies Department, 80055 Portici (Naples), Italy)

Abstract

The high penetration of the Renewable Energy Sources and other emerging technologies likely to be installed in future power grids will pose new operational challenges to grid operators. One of the main issues expected to affect the operation of the power grid is the impact of inverter-based technologies to the power system inertia and, hence, to system stability. Consequently, the main challenge of the future grid is the evaluation of the frequency stability in the presence of inverter-based systems and how the aforementioned technology can support frequency stability without the help of the rotating masses of the traditional power grid systems. To assess the above problem, this paper proposes a methodology to evaluate the frequency stability in a projection of the real distribution grid in Cyprus with the time horizon to be the year 2030. The power grid under investigation is evaluated with and without the presence of smart hierarchical controllers for providing support to the power system under disturbance conditions. The advanced controllers were applied to manage the available power resource in a fast and effective manner to maintain frequency within nominal levels. The controllers have been implemented in two hierarchical levels revealing useful responses for managing low-inertia networks. The first is set to act locally within a preselected area and the second level effectively supporting the different areas for optimal operation. After undertaking a significant number of simulations for time-series of one year, it was concluded from the results that the local control approach manages to minimize the frequency excursion effectively and influence all related attributes including the rate of change of frequency (RoCoF), frequency nadir and frequency zenith.

Suggested Citation

  • Minas Patsalides & Christina N. Papadimitriou & Venizelos Efthymiou & Roberto Ciavarella & Marialaura Di Somma & Anna Wakszyńska & Michał Kosmecki & Giorgio Graditi & Maria Valenti, 2020. "Frequency Stability Evaluation in Low Inertia Systems Utilizing Smart Hierarchical Controllers," Energies, MDPI, vol. 13(13), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3506-:d:381556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viktorija Bobinaite & Marialaura Di Somma & Giorgio Graditi & Irina Oleinikova, 2019. "The Regulatory Framework for Market Transparency in Future Power Systems under the Web-of-Cells Concept," Energies, MDPI, vol. 12(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. SungHoon Lim & Taewan Kim & Kipo Yoon & DongHee Choi & Jung-Wook Park, 2022. "A Study on Frequency Stability and Primary Frequency Response of the Korean Electric Power System Considering the High Penetration of Wind Power," Energies, MDPI, vol. 15(5), pages 1-16, February.
    2. Venizelos Efthymiou & Christina N. Papadimitriou, 2022. "Smart Photovoltaic Energy Systems for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-3, September.
    3. Minas Patsalides & Christina N. Papadimitriou & Venizelos Efthymiou, 2021. "Low Inertia Systems Frequency Variation Reduction with Fine-Tuned Smart Energy Controllers," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    4. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3506-:d:381556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.