IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3452-d379971.html
   My bibliography  Save this article

Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry

Author

Listed:
  • Miguel Angel Sanjuán

    (Spanish Institute of Cement and its Applications (IECA), C/José Abascal, 53, 28003 Madrid, Spain)

  • Cristina Argiz

    (Civil Engineering School, Technical University of Madrid, C/Profesor Aranguren, 3, Ciudad Universitaria, 28040 Madrid, Spain)

  • Pedro Mora

    (Department of Geological and Mines Engineering, Mine and Energy Engineering School, Technical University of Madrid (UPM), C/Ríos Rosas, 21, 28003 Madrid, Spain)

  • Aniceto Zaragoza

    (Oficemen, C/José Abascal, 53, 28003 Madrid, Spain)

Abstract

The European Green Deal and its endeavors will make rapid and far-reaching decisions with major implications for the European cement industry in the short- and longer-term. Accordingly, new measures should be dealt with quickly and effectively to minimize the adverse impact on global warming and global climate change by this sector. The aim of this study is to show and assess the measures to be undertaken to reach carbon neutrality by the Spanish cement industry by 2050. They may be categorized into three broad types based on the main materials: clinker, cement, and concrete. The cement sector must implement breakthrough initiatives, inventions, and technologies regarding the clinker and cement production processes. Furthermore, carbon dioxide uptake by cement-based materials must be considered to achieve the carbon neutrality objective. Accordingly, two methodologies named simplified and advanced, consistent with Guidelines for National Greenhouse Gas Inventories elaborated by the Intergovernmental Panel on Climate Change (IPCC), were selected to model the carbon offsetting by mortars and concretes. Finally, the existing climate change mitigation technologies available in Spain are insufficient to reach the net zero carbon footprint. Therefore, breakthrough technologies such as novel and efficient carbon dioxide capture, utilization, and storage (CCUS) technologies should be implemented by the Spanish cement industry to achieve zero carbon dioxide emissions in 2050.

Suggested Citation

  • Miguel Angel Sanjuán & Cristina Argiz & Pedro Mora & Aniceto Zaragoza, 2020. "Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry," Energies, MDPI, vol. 13(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3452-:d:379971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carmen Andrade & Miguel Ángel Sanjuán, 2018. "Updating Carbon Storage Capacity of Spanish Cements," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed K. H. Radwan & Chiu Chuen Onn & Kim Hung Mo & Soon Poh Yap & Ren Jie Chin & Sai Hin Lai, 2022. "Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4751-4785, April.
    2. Oksana Marinina & Marina Nevskaya & Izabela Jonek-Kowalska & Radosław Wolniak & Mikhail Marinin, 2021. "Recycling of Coal Fly Ash as an Example of an Efficient Circular Economy: A Stakeholder Approach," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Vladimir M. Matyushok & Anastasiia V. Sinelnikova & Sergey B. Matyushok & Diana Pamela Chavarry Galvez, 2024. "Carbon Capture and Storage in Hydrogen Production: World Experience and Growth of Export Opportunities of the Russian Hydrogen Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 507-516, January.
    4. Muhammad Rauf Shaker & Mayurkumar Bhalala & Qayoum Kargar & Byungik Chang, 2020. "Evaluation of Alternative Home-Produced Concrete Strength with Economic Analysis," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    5. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Ángel Sanjuán & Esteban Estévez & Cristina Argiz, 2019. "Carbon Dioxide Absorption by Blast-Furnace Slag Mortars in Function of the Curing Intensity," Energies, MDPI, vol. 12(12), pages 1-9, June.
    2. Zhang, Ning & Zhang, Duo & Zuo, Jian & Miller, Travis R. & Duan, Huabo & Schiller, Georg, 2022. "Potential for CO2 mitigation and economic benefits from accelerated carbonation of construction and demolition waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Jairo José de Oliveira Andrade & Edna Possan & Matheus Chiaradia Wenzel & Sérgio Roberto da Silva, 2019. "Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach," Sustainability, MDPI, vol. 11(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3452-:d:379971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.