IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3155-d373006.html
   My bibliography  Save this article

Doubly Fed Induction Generator Open Stator Synchronized Control during Unbalanced Grid Voltage Condition

Author

Listed:
  • Akrama Khan

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa)

  • Xiao Ming Hu

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa)

  • Mohamed Azeem Khan

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa)

  • Paul Barendse

    (Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa)

Abstract

In this paper, a systematic synchronization procedure is proposed for a doubly fed induction generator (DFIG) during unbalanced grid voltage conditions. The initial induced voltage at the open stator terminal is required to synchronize with the grid voltage in magnitude, frequency and phase. An open stator negative sequence rotor current controller is implemented with the conventional DFIG vector controller, which allows the induced stator voltage to become as unbalanced as the grid voltage, hence enabling a smooth connection. A brief comparison is provided for practical issues such as controller structure variation between DFIG open stator and normal operating conditions, and initial encoder rotor angle measurement offset. The procedure is validated experimentally on a 2.2 kW laboratory-scaled DFIG test bench.

Suggested Citation

  • Akrama Khan & Xiao Ming Hu & Mohamed Azeem Khan & Paul Barendse, 2020. "Doubly Fed Induction Generator Open Stator Synchronized Control during Unbalanced Grid Voltage Condition," Energies, MDPI, vol. 13(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3155-:d:373006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3155/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adolfo Dannier & Emanuele Fedele & Ivan Spina & Gianluca Brando, 2022. "Doubly-Fed Induction Generator (DFIG) in Connected or Weak Grids for Turbine-Based Wind Energy Conversion System," Energies, MDPI, vol. 15(17), pages 1-5, September.
    2. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    3. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3155-:d:373006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.