IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p3011-d370250.html
   My bibliography  Save this article

Efficient Unbalanced Three-Phase Network Modelling for Optimal PV Inverter Control

Author

Listed:
  • Chi-Thang Phan-Tan

    (Department of Electrical and Electronic, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland)

  • Martin Hill

    (Department of Electrical and Electronic, Cork Institute of Technology, Bishopstown, T12 P928 Cork, Ireland)

Abstract

High penetration levels of renewable energy generation in the distribution network require voltage regulation to avoid excessive voltage at generating nodes. To effectively control the network and optimize network hosting capacity, the distribution system operator must have an efficient model for power flow analysis. This paper presents the formulas and steps to express the power flow analysis equations of an unbalanced 3-phase network in matrix form suited to programmed solutions. A benchmark MATLAB/Simulink network with unbalanced distribution lines, photovoltaic inverters, and loads is built to verify the matrix model. To demonstrate the application of the model, the control of reverse energy flow from the photovoltaic inverters to keep the voltage in the network below the regulated level is simulated. Two decentralized control algorithms are applied in the network, including an on/off and a multi-objective constrained optimization controller. The detailed construction of the optimization problem for the 3-phase network in matrix form, which is consistent with the power flow calculation, is described. Simulation with the control methods over a day shows that the total active power of the on/off and optimized controllers deliver 41.92% and 99.39% of the available solar power, respectively, while maintaining the network node voltages within limits.

Suggested Citation

  • Chi-Thang Phan-Tan & Martin Hill, 2020. "Efficient Unbalanced Three-Phase Network Modelling for Optimal PV Inverter Control," Energies, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3011-:d:370250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/3011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/3011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baljinnyam Sereeter & Kees Vuik & Cees Witteveen, 2017. "Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks," Energies, MDPI, vol. 10(10), pages 1-20, October.
    2. Samadi, Afshin & Shayesteh, Ebrahim & Eriksson, Robert & Rawn, Barry & Söder, Lennart, 2014. "Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems," Renewable Energy, Elsevier, vol. 71(C), pages 315-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zekun Sun & Hao Liu & Yueming Ding & Haopeng Luo & Ting Liu & Qinyue Tan, 2022. "Collaborative Control Strategy of Power Quality Based on Residual Capacity of Photovoltaic Inverter," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Harshavardhan Palahalli & Paolo Maffezzoni & Giambattista Gruosso, 2021. "Gaussian Copula Methodology to Model Photovoltaic Generation Uncertainty Correlation in Power Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    4. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    5. Hakim Bennani & Ahmed Chebak & Abderrazak El Ouafi, 2023. "Unique Symbolic Factorization for Fast Contingency Analysis Using Full Newton–Raphson Method," Energies, MDPI, vol. 16(11), pages 1-17, May.
    6. Konstantinos Kotsalos & Ismael Miranda & Jose Luis Dominguez-Garcia & Helder Leite & Nuno Silva & Nikos Hatziargyriou, 2020. "Exploiting OLTC and BESS Operation Coordinated with Active Network Management in LV Networks," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    7. Anuwat Chanhome & Surachai Chaitusaney, 2021. "A Modification of Newton–Raphson Power Flow for Using in LV Distribution System," Energies, MDPI, vol. 14(22), pages 1-19, November.
    8. Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    9. Baljinnyam Sereeter & Werner van Westering & Cornelis Vuik & Cees Witteveen, 2019. "Linear Power Flow Method Improved With Numerical Analysis Techniques Applied to a Very Large Network," Energies, MDPI, vol. 12(21), pages 1-15, October.
    10. Chi-Thang Phan-Tan & Martin Hill, 2021. "Decentralized Optimal Control for Photovoltaic Systems Using Prediction in the Distribution Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    11. Vergara, Pedro P. & Salazar, Mauricio & Mai, Tam T. & Nguyen, Phuong H. & Slootweg, Han, 2020. "A comprehensive assessment of PV inverters operating with droop control for overvoltage mitigation in LV distribution networks," Renewable Energy, Elsevier, vol. 159(C), pages 172-183.
    12. Bendato, Ilaria & Bonfiglio, Andrea & Brignone, Massimo & Delfino, Federico & Pampararo, Fabio & Procopio, Renato, 2017. "A real-time Energy Management System for the integration of economical aspects and system operator requirements: Definition and validation," Renewable Energy, Elsevier, vol. 102(PB), pages 406-416.
    13. Maria Eliza Kootte & Cornelis Vuik, 2021. "Steady-State Stand-Alone Power Flow Solvers for Integrated Transmission-Distribution Networks: A Comparison Study and Numerical Assessment," Energies, MDPI, vol. 14(18), pages 1-19, September.
    14. Kryonidis, Georgios C. & Kontis, Eleftherios O. & Papadopoulos, Theofilos A. & Pippi, Kalliopi D. & Nousdilis, Angelos I. & Barzegkar-Ntovom, Georgios A. & Boubaris, Alexandros D. & Papanikolaou, Nick, 2021. "Ancillary services in active distribution networks: A review of technological trends from operational and online analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Sampaio, Leonardo P. & de Brito, Moacyr A.G. & de A. e Melo, Guilherme & Canesin, Carlos A., 2016. "Grid-tie three-phase inverter with active power injection and reactive power compensation," Renewable Energy, Elsevier, vol. 85(C), pages 854-864.
    16. Zain Anwer Memon & Riccardo Trinchero & Yanzhao Xie & Flavio G. Canavero & Igor S. Stievano, 2020. "An Iterative Scheme for the Power-Flow Analysis of Distribution Networks based on Decoupled Circuit Equivalents in the Phasor Domain," Energies, MDPI, vol. 13(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3011-:d:370250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.