IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2923-d368319.html
   My bibliography  Save this article

Dynamic Effect of Input-Voltage Feedforward in Three-Phase Grid-Forming Inverters

Author

Listed:
  • Matias Berg

    (Electrical Engineering, Tampere University, 33720 Tampere, Finland)

  • Tomi Roinila

    (Electrical Engineering, Tampere University, 33720 Tampere, Finland)

Abstract

Grid-connected and grid-forming inverters play essential roles in the utilization of renewable energy. One problem of such a converter system is the voltage deviations in the DC-link between the source and the inverter that can disrupt the inverter output voltage. A common method to prevent these voltage deviations is to apply an input-voltage feedforward control. However, the feedforward control has detrimental effects on the inverter dynamics. It is shown that the effect of the feedforward in the input-to-output dynamics is not ideal due to the delay in the digital control system. The delay affects the input-to-output dynamics at high frequencies, and only a minor improvement can be achieved by low-pass filtering the feedforward control signal. Furthermore, the feedforward control can remarkably affect the inverter input admittance, and therefore, impedance-based stability problems may arise at the DC interface. This paper proposes a method based on linearization and extra element theorem to model the effect of the feedforward control in the inverter dynamics. Experimental measurements are shown to demonstrate the effectiveness of the proposed model.

Suggested Citation

  • Matias Berg & Tomi Roinila, 2020. "Dynamic Effect of Input-Voltage Feedforward in Three-Phase Grid-Forming Inverters," Energies, MDPI, vol. 13(11), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2923-:d:368319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teuvo Suntio & Tuomas Messo & Matias Berg & Henrik Alenius & Tommi Reinikka & Roni Luhtala & Kai Zenger, 2019. "Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications," Energies, MDPI, vol. 12(3), pages 1-31, January.
    2. Rutian Wang & Yuyang Wu & Guoqing He & Ying Lv & Jiaxing Du & Yanhao Li, 2018. "Impedance Modeling and Stability Analysis for Cascade System of Three-Phase PWM Rectifier and LLC Resonant Converter," Energies, MDPI, vol. 11(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladislas Mutunda Kangaji & Lagouge Tartibu & Pitshou N. Bokoro, 2023. "Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter," Energies, MDPI, vol. 16(16), pages 1-23, August.
    2. Roni Luhtala & Henrik Alenius & Tomi Roinila, 2020. "Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Jae-Suk Lee & Yeong-Jun Choi, 2021. "A Stability Improvement Method of DC Microgrid System Using Passive Damping and Proportional-Resonance (PR) Control," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    4. Chien-Chun Huang & Sheng-Li Yao & Huang-Jen Chiu, 2020. "Stability Analysis and Optimal Design for Virtual Impedance of 48 V Server Power System for Data Center Applications," Energies, MDPI, vol. 13(20), pages 1-21, October.
    5. Henrik Alenius & Tomi Roinila, 2020. "Impedance-Based Stability Analysis of Paralleled Grid-Connected Rectifiers: Experimental Case Study in a Data Center," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Ishita Ray, 2021. "Review of Impedance-Based Analysis Methods Applied to Grid-Forming Inverters in Inverter-Dominated Grids," Energies, MDPI, vol. 14(9), pages 1-18, May.
    7. Matthias Buchner & Krzysztof Rudion, 2021. "Identification of Grid Impedance by Broadband Signals in Power Systems with High Harmonics," Energies, MDPI, vol. 14(21), pages 1-23, November.
    8. Haifeng Liang & Yuxi Huang & Hao Sun & Zhiqian Liu, 2019. "Research on Large-Signal Stability of DC Microgrid Based on Droop Control," Energies, MDPI, vol. 12(16), pages 1-14, August.
    9. Wu Cao & Kangli Liu & Shunyu Wang & Haotian Kang & Dongchen Fan & Jianfeng Zhao, 2019. "Harmonic Stability Analysis for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Global Admittance," Energies, MDPI, vol. 12(14), pages 1-16, July.
    10. Ranjan Kumar & Chandrashekhar N. Bhende, 2023. "Active Damping Stabilization Techniques for Cascaded Systems in DC Microgrids: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    11. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    12. Jerzy Zgraja & Grzegorz Lisowski & Jacek Kucharski, 2020. "Autonomous Energy Matching Control in an LLC Induction Heating Generator," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2923-:d:368319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.