IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2562-d359807.html
   My bibliography  Save this article

Dynamic Residential Energy Management for Real-Time Pricing

Author

Listed:
  • Leehter Yao

    (Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Fazida Hanim Hashim

    (Faculty of Engineering and Built Environment, National University of Malaysia, Selangor 43600, Malaysia)

  • Chien-Chi Lai

    (Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

A home energy management system (HEMS) was designed in this paper for a smart home that uses integrated energy resources such as power from the grid, solar power generated from photovoltaic (PV) panels, and power from an energy storage system (ESS). A fuzzy controller is proposed for the HEMS to optimally manage the integrated power of the smart home. The fuzzy controller is designed to control the power rectifier for regulating the AC power in response to the variations in the residential electric load, solar power from PV panels, power of the ESS, and the real-time electricity prices. A self-learning scheme is designed for the proposed fuzzy controller to adapt with short-term and seasonal climatic changes and residential load variations. A parsimonious parameterization scheme for both the antecedent and consequent parts of the fuzzy rule base is utilized so that the self-learning scheme of the fuzzy controller is computationally efficient.

Suggested Citation

  • Leehter Yao & Fazida Hanim Hashim & Chien-Chi Lai, 2020. "Dynamic Residential Energy Management for Real-Time Pricing," Energies, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2562-:d:359807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    2. Marin Cerjan & Marin Matijaš & Marko Delimar, 2014. "Dynamic Hybrid Model for Short-Term Electricity Price Forecasting," Energies, MDPI, vol. 7(5), pages 1-15, May.
    3. Papadimitriou, Theophilos & Gogas, Periklis & Stathakis, Efthimios, 2014. "Forecasting energy markets using support vector machines," Energy Economics, Elsevier, vol. 44(C), pages 135-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Mancini & Jacopo Cimaglia & Gianluigi Lo Basso & Sabrina Romano, 2021. "Implementation and Simulation of Real Load Shifting Scenarios Based on a Flexibility Price Market Strategy—The Italian Residential Sector as a Case Study," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuntian Cheng & Bin Luo & Shumin Miao & Xinyu Wu, 2016. "Mid-Term Electricity Market Clearing Price Forecasting with Sparse Data: A Case in Newly-Reformed Yunnan Electricity Market," Energies, MDPI, vol. 9(10), pages 1-22, October.
    2. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    4. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    5. Zoran Gligorić & Svetlana Štrbac Savić & Aleksandra Grujić & Milanka Negovanović & Omer Musić, 2018. "Short-Term Electricity Price Forecasting Model Using Interval-Valued Autoregressive Process," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    7. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    8. Cong, Lin William & Li, Ye & Wang, Neng, 2022. "Token-based platform finance," Journal of Financial Economics, Elsevier, vol. 144(3), pages 972-991.
    9. Baruník, Jozef & Malinská, Barbora, 2016. "Forecasting the term structure of crude oil futures prices with neural networks," Applied Energy, Elsevier, vol. 164(C), pages 366-379.
    10. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    11. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    12. Emilio Colombo & Gianfranco Forte & Roberto Rossignoli, 2019. "Carry Trade Returns with Support Vector Machines," International Review of Finance, International Review of Finance Ltd., vol. 19(3), pages 483-504, September.
    13. Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
    14. Alexander Ryota Keeley & Ken’ichi Matsumoto & Kenta Tanaka & Yogi Sugiawan & Shunsuke Managi, 2021. "The Impact of Renewable Energy Generation on the Spot Market Price in Germany: Ex-Post Analysis using Boosting Method," The Energy Journal, , vol. 42(1_suppl), pages 1-22, June.
    15. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    16. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    17. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
    18. Ricardo Faia & Tiago Pinto & Zita Vale & Juan Manuel Corchado, 2017. "An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios," Energies, MDPI, vol. 10(7), pages 1-18, June.
    19. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.
    20. Peter Boait & J. Richard Snape & Robin Morris & Jo Hamilton & Sarah Darby, 2019. "The Practice and Potential of Renewable Energy Localisation: Results from a UK Field Trial," Sustainability, MDPI, vol. 11(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2562-:d:359807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.